
GPU-Based Large-Scale
Scientific Visualization
Johanna Beyer, Harvard University
Markus Hadwiger, KAUST

Course Website:
http://johanna-b.github.io/LargeSciVis2018/index.html

Part 2 -
Scalable Volume Visualization
Architectures and Applications

History
Categorization

• Working Set Determination
• Working Set Storage & Access
• Rendering (Ray Traversal)

Ray-Guided Volume Rendering Examples
Summary

PART 2 – SCALABLE ARCHITECTURES &
APPLICATIONS

Texture slicing [Cullip and Neumann ’93, Cabral et al. ’94, Rezk-Salama et al. ‘00]

+ Minimal hardware requirements

- Visual artifacts, less flexibility

HISTORY (1)

GPU ray-casting [Röttger et al. ‘03, Krüger and Westermann ‘03]
+ standard image order approach, embarrassingly parallel
+ supports many performance and quality enhancements

HISTORY (2)

Large data volume rendering
• Octree rendering based on texture-slicing

[LaMar et al. ’99, Weiler et al. ’00, Guthe et al. ’02]
• Bricked single-pass ray-casting

[Hadwiger et al. ’05, Beyer et al. ’07]
• Bricked multi-resolution single-pass ray-casting

[Ljung et al. ’06, Beyer et al. ’08, Jeong et al. ’09]
• Ray-guided volume rendering [Crassin et al. ‘09]
• Optimized CPU ray-casting [Knoll et al. ’11]
• Multi-level page tables [Hadwiger et al. ‘12]

HISTORY (3)

Examples

• GPU 3D texture mapping with arbitrary levels of detail
• Consistent interpolation between adjacent resolution levels
• Adapting slice distance with respect to desired LOD (needs opacity

correction)
• LOD based on user-defined focus point

OCTREE RENDERING AND TEXTURE SLICING

[Weiler et al., IEEE Symp. Vol Vis 2000]
Level-Of-Detail Volume Rendering via 3D Textures

Volume representation Octree
Rendering CPU octree traversal,

texture slicing
Working set determination View frustum

• 3D brick cache for out-of-core volume rendering
• Object space culling and empty space skipping

in ray setup step
• Correct tri-linear interpolation between bricks

BRICKED SINGLE-PASS RAY-CASTING

[Hadwiger et al., Eurographics 2005]
Real-Time Ray-Casting and Advanced Shading of
Discrete Isosurfaces

Volume representation Single-resolution grid
Rendering Bricked single-pass

ray-casting
Working set determination Global, view frustum

• Adaptive object- and image-space sampling
• Adaptive sampling density along ray
• Adaptive image-space sampling, based on statistics for screen tiles

• Single-pass fragment program
• Correct neighborhood samples for interpolation fetched in shader

• Transfer function-based LOD selection

BRICKED MULTI-RESOLUTION RAY-CASTING

[Ljung, Volume Graphics 2006]
Adaptive Sampling in Single Pass, GPU-based Raycasting
of Multiresolution Volumes

Volume representation Multi-resolution grid
Rendering Bricked single-pass

ray-casting
Working set determination Global, view frustum

Main questions
• Q1: How is the working set determined?
• Q2: How is the working set stored?
• Q3: How is the rendering done?

Huge difference between ‘traditional’ and ‘modern’ ray-guided approaches!

CATEGORIZATION OF SCALABLE VOLUME
RENDERING APPROACHES

Working set
determination

Full volume Basic culling
(global attributes, view frustum)

Ray-guided /
visualization-driven

Volume data
representation

- Linear
(non-
bricked)

- Single-resolution
grid

- Grid with octree
per brick

- Octree
- Kd-tree
- Multi-

resolution grid

- Octree
- Multi-resolution grid

Rendering
(ray traversal)

- Texture
slicing

- Non-bricked
ray-casting

- CPU octree traversal (multi-pass)
- CPU kd-tree traversal (multi-pass)
- Bricked/virtual texture ray-casting

(single-pass)

- GPU octree traversal
(single-pass)

- Multi-level virtual
texture ray-casting
(single-pass)

Scalability Low Medium High

CATEGORIZATION

Global attribute-based culling (view-independent)
• Cull against transfer function, iso value, enabled objects, etc.

View frustum culling (view-dependent)
• Cull bricks outside the view frustum

Occlusion culling?

Q1: WORKING SET DETERMINATION –
TRADITIONAL

Cull bricks based on attributes; view-independent
• Transfer function
• Iso value
• Enabled segmented objects

Often based on min/max bricks
• Empty space skipping
• Skip loading of ‘empty’ bricks
• Speed up on-demand spatial queries

GLOBAL ATTRIBUTE-BASED CULLING

• Cull all bricks against view frustum
• Cull all occluded bricks

VIEW FRUSTUM, OCCLUSION CULLING

Visibility determined during ray traversal
• Implicit view frustum culling (no extra step required)
• Implicit occlusion culling (no extra steps or occlusion buffers)

Q1: WORKING SET DETERMINATION –
MODERN (1)

Rays determine working set directly
• Each ray writes out list of bricks it requires (intersects) front-to-back
• Use modern OpenGL extensions

(GL_ARB_shader_storage_buffer_object, …)

Q1: WORKING SET DETERMINATION –
MODERN (2)

Different possibilities:
• Individual texture for each brick

• OpenGL-managed 3D textures (paging done by OpenGL)
• Pool of brick textures (paging done manually)

• Multiple bricks combined into single texture
• Need to adjust texture coordinates for each brick

Q2: WORKING SET STORAGE - TRADITIONAL

Shared cache texture for all bricks (“brick pool”)

Q2: WORKING SET STORAGE – MODERN (1)

Caching Strategies
• LRU, MRU

Handling missing bricks
• Skip or substitute lower resolution

Strategies if the working set is too large
• Switch from single-pass to multi-pass rendering
• Interrupt rendering on cache miss (“page fault handling”)

Q2: WORKING SET STORAGE – MODERN (2)

Traverse bricks in front-to-back visibility order
• Order determined on CPU
• Easy to do for grids and trees (recursive)

Render each brick individually
• One rendering pass per brick

Traditional problems
• When to stop? (early ray termination vs. occlusion culling)
• Occlusion culling of each brick usually too conservative

Q3: RENDERING - TRADITIONAL

• Preferably single-pass rendering
• All rays traversed in front-to-back order
• Rays perform dynamic address translation (virtual to physical)
• Rays dynamically write out brick usage information

• Missing bricks (“cache misses”)
• Bricks in use (for replacement strategy: LRU/MRU)

• Rays dynamically determine required resolution
• Per-sample or per-brick

Q3: RENDERING - MODERN

Similar to CPU virtual memory but in 2D/3D texture space
• Virtual image or volume (extent of original data)
• Domain decomposition of virtual texture space: pages
• Working set of physical pages stored in cache texture
• Page table maps from virtual pages to physical pages

VIRTUAL TEXTURING

texture
cache

virtual image or
volume space

[Hadwiger et al., Eurographics ’05]
Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces

[Kraus and Ertl, Graphics Hardware ’02]
Adaptive Texture Maps

• OpenGL
• Sparse textures (ARB_sparse_texture, ARB_sparse_texture2)

• Vulkan
• Sparse partially-resident

images(VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT)

• CUDA
• Unified memory with on-demand page migration
• Only for regular (global) memory, not for textures

HARDWARE VIRTUAL TEXTURES

Map virtual to physical address
pt_entry = pageTable[virtAddx / brickSize];
physAddx = pt_entry.physAddx + virtAddx % brickSize;

ADDRESS TRANSLATION

+
virtual
volume space cache

page table

Tree (quadtree/octree)
• Linked nodes; dynamic traversal

Uniform page tables
• Can do page table mipmap; uniform in each level
Multi-level page tables
• Recursive page structure decoupled from multi-resolution hierarchy
Spatial hashing
• Needs collision handling; hashing function must minimize collisions

ADDRESS TRANSLATION VARIANTS

Example: Volume rendering octrees or kd-trees

• Similar to tree traversal in ray tracing

• Standard traversal: recursive with stack

• GPU algorithms without or with limited stack

• Use “ropes” between nodes [Havran et al. ’98, Gobbetti et al. ‘08]

• kd-restart, kd-shortstack [Foley and Sugerman ‘05]

TREE TRAVERSAL

courtesy Foley and Sugerman

Tree can be seen as a ‘page table’
• Linked nodes; dynamic traversal
• Nodes contain page table entries

ADDRESS TRANSLATION –
VARIANT 1: TREE TRAVERSAL

“page table hierarchy”
(tree) coupled to
resolution hierarchy!

virtual volume tree

Tree can be seen as a ‘page table’
• Linked nodes; dynamic traversal
• Nodes contain page table entries

ADDRESS TRANSLATION –
VARIANT 1: TREE TRAVERSAL

does not require full tree!

virtual volume tree

Only feasible when page table is not too large
• For “medium-sized” volumes or “large” page/brick sizes

ADDRESS TRANSLATION –
VARIANT 2: UNIFORM PAGE TABLES

requires full-size page table!

virtual volume page table

Only feasible when page table is not too large
• For “medium-sized” volumes or “large” page/brick sizes

Can do page table for each resolution level
-> page table mipmap

• Uniform in each level

ADDRESS TRANSLATION –
VARIANT 2: UNIFORM PAGE TABLES

virtual volume page tables for each resolution level

• Uniform page tables (mipmaps) managed in hardware
• Query for page residency in fragment shader
• Fragment shader decides how to handle missing pages

• OpenGL sparse textures
(GL_ARB_sparse_texture, GL_ARB_sparse_texture2)

• Vulkan sparse partially-resident images
• Maximum size limitations apply (e.g., 32k for 2D, 16k for 3D)

ADDRESS TRANSLATION –
VARIANT 2B: HARDWARE PAGE TABLES

Virtualize page tables recursively
• Same idea as in CPU multi-level page tables
• Pages of page table entries like pages of voxels

Recursive page table hierarchy
• Decoupled from data resolution levels!
• # page table levels << # data resolution levels

ADDRESS TRANSLATION –
VARIANT 3: MULTI-LEVEL PAGE TABLES

data
(virtual)

page table
(virtual)

page directory
(top-level page table)

multi-resolution
page directory

[Hadwiger et al., 2012]

MULTI-LEVEL PAGE TABLES: MULTI-
RESOLUTION

resolution size resolution
hierarchy

page table
hierarchy page directory

32,000 x 32,000 x 4,000 4 TB 11 levels 2 levels 32 x 32 x 4

128,000 x 128,000 x 16,000 196 TB 13 levels 2 levels 128 x 128 x 16

512,000 x 512,000 x 64,000 15 PB 15 levels 3 levels 16 x 16 x 2

2,000,000 x 2,000,000 x 250,000 888 PB 17 levels 3 levels 64 x 64 x 8

voxel blocks: 323 voxels

MULTI-LEVEL PAGE TABLES: SCALABILITY

page table blocks: 323 page table entries

Instead of virtualizing page table, put entries into hash table
• Hashing function maps virtual brick to page table entry
• Hash table size is maximum working set size

ADDRESS TRANSLATION –
VARIANT 4: SPATIAL HASHING (1)

working set

Hashing function
• Map (x,y,z) or (x,y,z,lod) of brick to 1D index
• x*p1 xor y*p2 xor z*p3 modulo # hash table rows
• p1, p2, p3 are large prime numbers

Hashing function must minimize collisions
• Collision handling expensive (linear search, link traversal)

Missing bricks: linear search through hash table row

ADDRESS TRANSLATION –
VARIANT 4: SPATIAL HASHING (2)

Summary

Many volumes larger than GPU memory
• Determine, manage, and render working set of visible bricks efficiently

SUMMARY (1)

Data Processing Visualization
Image

FilteringData
Pre-Processing Mapping Rendering

Traditional approaches
• Limited scalability
• Visibility determination on CPU
• Often had to use multi-pass approaches

Modern approaches
• High scalability (output sensitive)
• Visibility determination (working set) on GPU
• Dynamic traversal of multi-resolution structures on GPU

SUMMARY (2)

Orthogonal approaches
• Parallel and distributed visualization
• Clusters, in-situ setups, client/server systems

Future challenges
• Web-based visualization
• Raw data storage

SUMMARY (3)

Working set determination on GPU
• Ray-guided / visualization-driven approaches

Prefer single-pass rendering
• Entire traversal on GPU
• Use small brick sizes
• Multi-pass only when working set too large for single pass

Virtual texturing
• Powerful paradigm with very good scalability

SUMMARY - RAY-GUIDED VOLUME RENDERING

Questions?

Break (15 min)

GPU-Based Large-Scale
Scientific Visualization
Johanna Beyer, Harvard University
Markus Hadwiger, KAUST

Course Website:
http://johanna-b.github.io/LargeSciVis2018/index.html

