
GPU-Based Large-Scale
Scientific Visualization
Johanna Beyer, Harvard University
Markus Hadwiger, KAUST

Course Website:
http://johanna-b.github.io/LargeSciVis2018/index.html

1. Introduction to scalable volume visualization
• Focus on volume data
• General scalability and out-of-core techniques

2. Scalable GPU volume rendering
• Virtual texturing
• GPU virtual memory architectures

3. Ray-guided volume rendering
• Visibility-driven data processing
• Empty-space skipping

4. Display-aware visualization and processing

COURSE OVERVIEW - TOPICS

Course webpage (updated material):
http://johanna-b.github.io/LargeSciVis2018/index.html

State-of-the-Art in GPU-Based Large-Scale Volume Visualization
[J. Beyer, M. Hadwiger, H. Pfister; Computer Graphics Forum, 2015]

https://dl.acm.org/citation.cfm?id=3071497

COURSE OVERVIEW - MATERIAL

• Part 1 – Introduction & Basics of Scalable Volume
Visualization
Markus Hadwiger [2:15pm – 3:15pm]

• Part 2 – Scalable Volume Visualization Architectures
Johanna Beyer [3:15pm – 4:00pm]

• Break
[4:00pm – 4:15pm]

COURSE OVERVIEW - SCHEDULE

• Part 3 – GPU-Based Ray-Guided Volume Rendering
Johanna Beyer [4:15pm – 5:15pm]

• Part 4 – Display-Aware Visualization and Processing
Markus Hadwiger [5:15pm – 5:45pm]

• Wrap-Up, Summary
Johanna Beyer, Markus Hadwiger [5:45pm – 6:00pm]

COURSE OVERVIEW - SCHEDULE

Part 1 -
Introduction & Basics of

Scalable Volume Visualization

Motivation

“In information technology, big data is a collection of data sets so large and
complex that it becomes difficult to process using on-hand database
management tools or traditional data processing applications. The
challenges include capture, curation, storage, search, sharing, analysis, and
visualization.”

‘Big Data’ on wikipedia.org

Our main interest:
Very large 3D volume data

BIG DATA

Example: Connectomics (neuroscience)

DATA-DRIVEN SCIENCE (E-SCIENCE)

EARTH SCIENCES
Global Climate Models

MEDICINE
Digital Health Records

BIOLOGY
Connectomics

ENGINEERING
Large CFD Simulations

courtesy Stefan Bruckner

VOLUME DATA GROWTH

64x64x400
(SabelIa 1988)

21494x25790x1850
(Hadwiger et al. 2012)

256x256x256
(Krüger 2003)

courtesy Jens Krüger

DATA SIZE EXAMPLES
year paper data set size comments
2002 Guthe et al. 512 x 512 x 999 (500 MB)

2,048 x 1,216 x 1,877 (4.4 GB)
multi-pass, wavelet compression,

streaming from disk
2003 Krüger & Westermann 256 x 256 x 256 (32 MB) single-pass ray-casting
2005 Hadwiger et al. 576 x 352 x 1,536 (594 MB) single-pass ray-casting (bricked)
2006 Ljung et al. 512 x 512 x 628 (314 MB)

512 x 512 x 3396 (1.7 GB)
single-pass ray-casting,

multi-resolution
2008 Gobbetti et al. 2,048 x 1,024 x 1,080 (4.2 GB) ‘ray-guided’ ray-casting with

occlusion queries
2009 Crassin et al. 8,192 x 8,192 x 8,192 (512 GB) ray-guided ray-casting
2011 Engel 8,192 x 8,192 x 16,384 (1 TB) ray-guided ray-casting
2012 Hadwiger et al. 18,000 x 18,000 x 304 (92 GB)

21,494 x 25,790 x 1,850 (955 GB)
ray-guided ray-casting

visualization-driven system
2013 Fogal et al. 1,728 x 1,008 x 1,878 (12.2 GB)

8,192 x 8,192 x 8,192 (512 GB)
ray-guided ray-casting

2018 Beyer et al. 21,494 x 25,790 x 1,850 (955 GB) images +
10,747 x 12,895 x 1,850 (489 GB) segmentation

ray-guided ray-casting,
empty space skipping

The Connectome
How is the Mammalian Brain Wired?

Daniel Berger, MIT

The Connectome
How is the Mammalian Brain Wired?

~60 µm3

1 Teravoxel
21,500 x 25,800 x 1,850

Bobby Kasthuri, Harvard

ELECTRON MICROSCOPY (EM) IMAGES

• Huge amount of raw data (terabytes to petabytes)
• Takes months to years to scan, align, segment
• How to visualize and analyze this?

PETAVOXEL MICROSCOPY VOLUMES

Course focus
• (Single) GPUs in standard workstations
• Scalar volume data; single time step
• But a lot applies to more general settings…

Techniques orthogonal to this course (will not cover details)
• Parallel and distributed rendering, clusters, supercomputers, …
• Compression (encoding, decoding, ...)

COURSE SCOPE

Books
• Real-Time Volume Graphics, Engel et al., 2006
• High-Performance Visualization, Bethel et al., 2012

Surveys
• GPU-Based Large-Scale Volume Visualization: Beyer et al. ‘15
• Parallel Visualization: Wittenbrink ’98, Bartz et al. ‘00, Zhang et al. ’05
• Real Time Interactive Massive Model Visualization: Kasik et al. ‘06
• Vis and Visual Analysis of Multifaceted Scientific Data: Kehrer and Hauser ‘13
• Compressed GPU-Based Volume Rendering: Rodriguez et al. ’14
• Web-based Visualization: Mwalongo et al. ‘16
• In-Situ Methods, Infrastructures, and Applications in High Performace Comp.: Bauer

et al. ’16
• State of the art in transfer functions for direct volume rendering: Ljung et al. ‘16

RELATED BOOKS AND SURVEYS

Fundamentals

Assign optical properties (color, opacity) via transfer function

VOLUME RENDERING (1)

Ray-casting

VOLUME RENDERING (2)

Traditional HPC, parallel rendering definitions
• Strong scaling (“more nodes are faster for same data”)
• Weak scaling (“more nodes allow larger data”)

Our interest/definition: output sensitivity
• Running time/storage proportional to size of output instead of input

• Computational effort scales with visible data and screen resolution
• Working set independent of original data size

SCALABILITY

Output-sensitive algorithms
• Standard term in occlusion culling (of geometry)

Ray-guided volume rendering
• Determine working set via ray-casting
• Actual visibility; not approximate as in traditional occlusion culling

Visualization-driven pipeline
• Drive entire visualization pipeline (including processing) by actual on-screen

visibility

Display-aware techniques
• Image processing, … for current on-screen resolution

SOME TERMINOLOGY

LARGE-SCALE VISUALIZATION PIPELINE

Data Processing Visualization
Image

Filtering Mapping RenderingData
Pre-Processing

LARGE-SCALE VISUALIZATION PIPELINE

Data Processing Visualization
Image

FilteringData
Pre-Processing

Ray-Guided
RenderingData Structures Acceleration

Metadata
On-Demand
Processing

on-demand?

Scalability

Mapping Rendering

Basic Scalability Issues

SCALABILITY ISSUES

Scalability issues Scalable method
Data representation and storage Multi-resolution data structures

Data layout, compression
Work/data partitioning In-core/out-of-core

Parallel, distributed
Work/data reduction Pre-processing

On-demand processing
Streaming
In-situ visualization
Query-based visualization

SCALABILITY ISSUES

Scalability issues Scalable method
Data representation and storage Multi-resolution data structures

Data layout, compression
Work/data partitioning In-core/out-of-core

Parallel, distributed
Work/data reduction Pre-processing

On-demand processing
Streaming
In-situ visualization
Query-based visualization

Additional issues
• Data layout (linear order, Z/Morton order, …)
• Compression

DATA REPRESENTATIONS

Data structure Acceleration Out-of-Core Multi-Resolution
Mipmaps - Clipmaps Yes
Uniform bricking Cull bricks (linear) Working set (bricks) No
Hierarch. bricking Cull bricks (hierarch.) Working set (bricks) Bricked mipmap
Octrees Hierarchical traversal Working set (subtree) Yes (interior nodes)

UNIFORM VS. HIERARCHICAL DATA DECOMPOSITION

uniform grid bricked mipmap

octree

wikipedia.org

Grids
• Uniform or non-uniform

Hierarchical data structures
• Pyramid of uniform grids

• Bricked 2D/3D mipmaps
• Tree structures

• Quadtree, octree, kd-tree

Object space (data) decomposition
• Subdivide data domain into small bricks
• Re-orders data for spatial locality
• Each brick is now one unit (culling, paging, loading, …)

BRICKING (1)

What brick size to use?
• Small bricks

+ Good granularity:
Better culling efficiency, tighter working set, …

- More bricks to cull, more overhead for ghost voxels,
one rendering pass per brick is infeasible

• Traditional out-of-core volume rendering: large bricks (e.g., 2563)
• Modern out-of-core volume rendering: small bricks (e.g., 323)

• Task-dependent brick sizes
(small for rendering, large for disk/network storage)

BRICKING (2)

Analysis of different brick sizes: [Fogal et al. 2013]

Duplicate voxels at border (“ghost” voxels)
• Need at least one voxel overlap
• Large overhead for small bricks

Otherwise costly filtering at brick boundary
• Except with hardware support: OpenGL sparse textures / Vulkan sparse images

FILTERING AT BRICK BOUNDARIES

Pre-computation might take very long
• Brick on demand? Brick in streaming fashion (e.g., during scanning)?

Different brick sizes for different tasks (storage, rendering)?
• Re-brick to different size on demand?
• Dynamically fix up ghost voxels?

Can also mix 2D and 3D
• E.g., 2D tiling pre-computed, but compute 3D bricks on demand

PRE-COMPUTE ALL BRICKS?

Collection of different resolution levels
• Standard: dyadic pyramids (2:1 resolution reduction)
• Can manually implement arbitrary reduction ratios

Mipmaps
• Isotropic

MULTI-RESOLUTION PYRAMIDS (1)

level 0 level 1 level 2 level 3

3D mipmaps
• Isotropic

MULTI-RESOLUTION PYRAMIDS (2)

level 0
(8x8x8)

level 1
(4x4x4)

level 2
(2x2x2)

level 3
(1x1x1)

level 0
(8x8x4)

Scanned volume data are often anisotropic
• Reduce resolution anisotropically until isotropy reached

MULTI-RESOLUTION PYRAMIDS (3)

level 1
(4x4x4)

level 2
(2x2x2)

level 3
(1x1x1)

Each level is bricked individually
• Use same brick resolution (# voxels) in each level

BRICKING MULTI-RESOLUTION PYRAMIDS (1)

spatial
extent

level 0 level 1 level 2

Virtual memory: Each brick will be a “page”
• “Multi-resolution virtual memory”: every page lives in some resolution level

BRICKING MULTI-RESOLUTION PYRAMIDS (2)

memory
extent

4x4 pages 2x2 pages 1 page

Beware of aspect ratio and partially-filled pages
• Reduce total resolution in voxels; compute number of pages (ceil); iterate

BRICKING MULTI-RESOLUTION PYRAMIDS (3)

4x3 pages 2x2 pages 1 page

spatial
extent

Beware of aspect ratio and partially-filled pages
• Reduce total resolution in voxels; compute number of pages (ceil); iterate

BRICKING MULTI-RESOLUTION PYRAMIDS (3)

4x3 pages 2x2 pages 1 page

memory
extent

Tail of pyramid
• Below size of single page; can cut off early

BRICKING MULTI-RESOLUTION PYRAMIDS (4)

1 page 1 page 1 page

spatial
extent

Tail of pyramid
• Below size of single page; can cut off early

• GL_ARB_sparse_texture treats tail as single unit
of residency (implementation-dependent definition of tail !)

BRICKING MULTI-RESOLUTION PYRAMIDS (4)

memory
extent

OCTREES FOR VOLUME RENDERING (1)

Multi-resolution
• Adapt resolution of data to screen resolution

• Reduce aliasing
• Limit amount of data needed

Acceleration
• Hierarchical empty space skipping
• Start traversal at root

(but different optimized traversal algorithms:
kd-restart, kd-shortstack, etc.)

OCTREES FOR VOLUME RENDERING (2)

wikipedia.org

Representation
• Full octree

• Every octant in every resolution level
• Sparse octree

• Do not store voxel data of empty nodes

Data structure
• Pointer-based

• Parent node stores pointer(s) to children
• Pointerless

• Array to index full octree directly

SCALABILITY ISSUES

Scalability issues Scalable method
Data representation and storage Multi-resolution data structures

Data layout, compression
Work/data partitioning In-core/out-of-core

Parallel, distributed
Work/data reduction Pre-processing

On-demand processing
Streaming
In-situ visualization
Query-based visualization

• Out-of-core techniques
• Domain decomposition
• Parallel and distributed rendering

WORK/DATA PARTITIONING

Data too large for GPU memory
• Stream volume bricks from CPU to GPU on demand

Data too large for CPU memory
• Stream volume bricks from disk on demand

Data too large for local disk storage
• Stream volume bricks from network storage

OUT-OF-CORE TECHNIQUES (1)

GPU

CPU

disk network

Preparation
• Subdivide spatial domain

• May also be done “virtually”, i.e., data re-ordering may be delayed
• Allocate cache memory (e.g., large 3D cache texture)

Run-Time
• Determine working set
• Page working set into cache memory
• Render from cache memory

OUT-OF-CORE TECHNIQUES (2)

Subdivide image domain (image space)
• “Sort-first rendering” [Molnar, 1994]

• View-dependent

DOMAIN DECOMPOSITION (1)

Subdivide data domain (object space)
• “Sort-last rendering” [Molnar, 1994]

• View-independent

DOMAIN DECOMPOSITION (2)

SORT-FIRST VS. SORT-LAST

sort-first
(image domain)

sort-last
(data domain)

SCALABILITY ISSUES

Scalability issues Scalable method
Data representation and storage Multi-resolution data structures

Data layout, compression
Work/data partitioning In-core/out-of-core

Parallel, distributed
Work/data reduction Pre-processing

On-demand processing
Streaming
In-situ visualization
Query-based visualization

First determine what is visible / needed: working set
Then process only this working set
• Basic processing

• Noise removal and edge detection
• Registration and alignment
• Segmentation, …

• Basic data structure building
• Construct pages/bricks/octree nodes only on demand?

ON-DEMAND PROCESSING

EXAMPLE: 3D BRICK CONSTRUCTION FROM 2D EM
STREAMS

3D Block
Request

[Hadwiger et al., IEEE Vis 2012]

Edge enhancement for EM data
Caching scheme
• Process only currently visible bricks
• Cache result for re-use

GPU Implementation
• CUDA and shared memory for fast computation

Different noise removal and filtering algorithms

EXAMPLE: DENOISING & EDGE ENHANCEMENT

[Jeong et al., IEEE Vis 2009]
Scalable and Interactive Segmentation and Visualization of Neural Processes in EM Datasets

Registration at screen/brick resolution

EXAMPLE: REGISTRATION & ALIGNMENT

[Beyer et al., CG&A 2013]
Exploring the Connectome – Petascale Volume Visualization of Microscopy Data Streams

Questions?

GPU-Based Large-Scale
Scientific Visualization
Johanna Beyer, Harvard University
Markus Hadwiger, KAUST

Course Website:
http://johanna-b.github.io/LargeSciVis2018/index.html

