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Fig. 1. Observer motion relative to the time evolution of features: Hurricane Isabel in a time-dependent global wind data set.
(Bottom left) The actual path of Isabel (from NHC/Wikipedia). (Top left) Our observer field u automatically follows the motion of Isabel
without explicit tracking of its path. The shown path is simply a path line of u. (Right) Feature-relative visualization, focused on Isabel in
the center, enabling analysis of its time evolution “in place.” The hurricane appears steady, with the Earth moving inversely underneath.

Abstract—Computing and visualizing features in fluid flow often depends on the observer, or reference frame, relative to which the
input velocity field is given. A desired property of feature detectors is therefore that they are objective, meaning independent of the input
reference frame. However, the standard definition of objectivity is only given for Euclidean domains and cannot be applied in curved
spaces. We build on methods from mathematical physics and Riemannian geometry to generalize objectivity to curved spaces, using
the powerful notion of symmetry groups as the basis for definition. From this, we develop a general mathematical framework for the
objective computation of observer fields for curved spaces, relative to which other computed measures become objective. An important
property of our framework is that it works intrinsically in 2D, instead of in the 3D ambient space. This enables a direct generalization of
the 2D computation via optimization of observer fields in flat space to curved domains, without having to perform optimization in 3D.
We specifically develop the case of unsteady 2D geophysical flows given on spheres, such as the Earth. Our observer fields in curved
spaces then enable objective feature computation as well as the visualization of the time evolution of scalar and vector fields, such that
the automatically computed reference frames follow moving structures like vortices in a way that makes them appear to be steady.

Index Terms—Flow visualization, observer fields, frames of reference, objectivity, symmetry groups, intrinsic covariant derivatives

1 INTRODUCTION

Flow visualization is concerned with velocity vector fields that describe
fluid motion. Since the definition of velocity is the infinitesimal change
of spatial position with respect to time, this description depends on
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the notion of what is considered to be “the same position” over time.
Mathematically, this is the notion of a frame of reference, or an observer.
A frame of reference is a way of referencing positions in space over
time, i.e., a time-dependent transformation of space, with respect to
which derivatives are to be taken. (Not an observer as an actual person.)

For this reason, flow visualization as well as the computation of
flow features, such as vortices, in general inherently depend on the
chosen frame of reference. An important related concept therefore is
invariance with respect to certain changes of reference frame. Galilean
invariance [28] refers to frame changes with constant relative velocity,
which is inherently related to inertial frames in physics [63]. Objectiv-
ity [31] considers frame changes with time-dependent translations and
rotations. The standard definition used in visualization and continuum
mechanics is the one of Truesdell and Noll [65], which has received
significant attention for flow fields since the work of Haller [31]. A
major basic limitation of this definition, however, is that it is given only
for Euclidean space and cannot be used in general curved spaces.

One area where objectivity is particularly relevant is that of geophys-
ical flows, such as in the Earth’s atmosphere or oceans. The natural
reference frame, in this case, is rotating [51, p.14], i.e., non-inertial,
and Galilean invariance is not well-suited. As is common in flow vi-
sualization, we only consider motions by themselves (kinematics), not



the forces generating them (dynamics). We can therefore consider ac-
celerating reference frames just as easily as inertial frames, because the
differences in the forces acting are irrelevant. For example, in Fig. 2 we
consider an airplane as an observer measuring motion relative to its own
reference frame. Naturally, this does not change a phenomenon such as
a hurricane, but it does change all relative velocity measurements.

Although the Earth’s surface is embedded in a flat 3D space (ignor-
ing relativistic effects), it is beneficial to be able to view the domain
where a geophysical flow field is defined from an intrinsic, curved 2D
perspective. This not only allows for simplified computations in 2D
instead of in 3D, or considering different altitude or depth layers sepa-
rately; it also corresponds perfectly to the reference frame of circular
orbits, such as those of satellites or airplanes moving along great circles
around the Earth, as shown in Fig. 2. For visualization purposes, it is
also common to visualize spherical layers. Moreover, scientists have
even discovered that some geophysical fluid systems, such as aspects
of our atmosphere or even that of Jupiter [29, 56], can sometimes be
modeled in a more realistic way in 2D than in 3D, because the atmo-
sphere is so much thinner than wide. For this reason, it can be crucial
to perform computations in 2D, because the physical behavior of 2D
turbulence can be radically different from 3D turbulence [23, 35, 40].

With this motivation, we develop general techniques for flow visual-
ization and computation of flow features in curved spaces. For practical
relevance, we illustrate results for geophysical flows on spheres. We
generalize the notion of observer fields [30] from Euclidean space to
curved spaces. This enables “following” flow features such as vortices,
and visualizing the corresponding time evolution of scalar and vector
attributes “in place.” For example, Fig. 1 shows hurricane Isabel (2003)
in a time-dependent global wind simulation. Our computed observer
field automatically follows the motion of the hurricane. Fig. 1 (right)
shows feature-relative visualization, where the observer field makes
the motion of Isabel appear to be steady. This enables “feature-centric”
analysis, without having to explicitly follow the motion of the hurricane.

1.1 Observer Fields and Observed Time Derivatives
An observer field u(x, t) is a time-dependent velocity field that, instead
of describing the motion of particles, describes the motion of a con-
tinuous field of observers [30]. The path lines of the observer field
correspond to the world lines [3, p.8] of individual spatial locations
in the space of an observer that are viewed as being “the same point”
over time. If an observer field u describes a rigid motion, it is a Killing
vector field [53]. Figs. 2 (a,b,c) depict three time steps of observer fields
on a sphere. Fig. 3 shows one example input vector field v describing a
simple rotating vortex, as it is seen by four different observer fields u.

The observed time derivative corresponding to a given u(x, t) mea-
sures the differential change of an arbitrary input field v(x, t) with
respect to the observer motion described by u. This concept was in-
troduced in the context of Euclidean space [30]. We define this time
derivative, on any differential manifold M, as the differential operator

D

Dt
:=

∂

∂ t
+Lu. (1)

Here, Lu denotes the Lie derivative [22, Ch. 4] with respect to the
observer field u. In order to “steadify” an input vector field v, e.g., to
be able to compute and follow features, we compute observer fields u
by minimizing the derivative (D/Dt)(v−u). If Fig. 3 is interpreted as
showing four different input fields v, the observer-relative visualization
with respect to the optimized field u will always look like Fig. 3 (d).

1.2 Mathematical Framework for Curved Spaces
We develop a novel fully intrinsic mathematical framework for 2D flow
visualization and feature computation in curved spaces. Our major
contribution is the generalization of a prior Euclidean framework [30]
for the objective computation of observer fields to curved spaces. We
compute these fields by solving an energy minimization problem, mak-
ing unsteady input flows as steady as possible. We first introduce a
generalized notion of objectivity for curved spaces. While equivalent
to the standard one in Euclidean space [65], ours is fully intrinsic, us-
ing the concepts of continuous symmetry groups and group actions on

(a)

(c)(b)

Fig. 2. Observers in curved spaces. An airplane (blue path) and a
satellite (red path) are moving relative to the Earth. At each instant in
time, with respect to the Earth’s surface both fly in the direction of a
geodesic (a great circle). Considering the observer (airplane or satellite)
as stationary, the instantaneous relative motion of the Earth is a Killing
vector field on the sphere, in the opposite direction (right). (a) The Killing
field for the satellite is a steady field (assuming the satellite ground track
is always the same geodesic); (b,c) The field for the airplane is unsteady:
Each instant in time is determined by a different tangential velocity.

manifolds from mathematical physics. From general symmetry groups,
we specialize to observer transformations modeled as elements of the
isometry group of a manifold M. To simplify computations, we work
with infinitesimal isometries, given explicitly by vector fields on M.

To be able to achieve this, we derive the differential geometric
operators needed to compute observer fields in curved spaces: (1)
Observed time derivatives; (2) Approximate Killing fields; and (3) The
velocity gradient tensor ∇v as a covariant derivative [22, Ch. 9], instead
of the Jacobian that is commonly used in flow visualization.

Methodology. Our generalization of objectivity and observer fields
to curved spaces requires mathematical machinery from Riemannian
geometry and mathematical physics that is not common in the flow
visualization literature. For this reason, we summarize background and
our notation in the beginning, and provide extensive supplementary
appendixes. These techniques enable deriving a powerful generalization
of previous flow visualization techniques from flat space to curved
spaces in a clean and intrinsic manner. We believe that this powerful
methodology can be very useful for flow visualization in general, and
that it is worthwhile to introduce it to the flow visualization literature.

2 RELATED WORK

The framework presented here extends the work of Hadwiger et al. [30]
from Euclidean space Rn to curved spaces, focusing on curved two-
manifolds. We also model a collection of observers by an observer
velocity field describing their motion, which we also compute by solv-
ing a least-squares problem such that (1) it is objective, and (2) the input
flow field is as steady as possible relative to the observer field. However,
the generalization to curved spaces is conceptually and technically chal-
lenging. We propose a fully intrinsic generalization, working “inside”
the curved space. This results in natural and efficient generalizations,
and facilitates computing 2D observer fields via 2D optimization.

Flow visualization on curved surfaces. All major flow visualiza-
tion techniques have been extended from flat space to curved surfaces.
For example, LIC [14] and variants [43, 55, 60] have been extended
to curved surfaces, either for parametric surfaces [21], by texturing
triangle meshes [8,59,62], or by computing LIC in screen space [6,36].
Image-based texture advection techniques [37, 67] have been extended
as well, such as image-based flow visualization on surfaces [39, 68].
Image space techniques typically project vector fields from 3D to 2D
screen space for visualization. We refer to the survey by Edmunds et
al. [20]. Texture atlases have also been used for flow visualization, for
example flow charts [44]. We similarly use multiple coordinate charts.

Vector field design on surfaces. We extensively use differential
properties of manifolds and vector fields. These are particularly im-
portant for computations with vector fields on surfaces, such as vector
field design on surfaces [15, 16, 71]. We refer to the survey of Peng
and Laramee [52]. We would like to particularly point out the use of
geodesic polar maps and parallel transport along geodesics in the work
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Fig. 3. A rotating vortex seen by four different observers. The observers rotate leftward around the sphere (here, around a vertical axis), with
angular velocities ωωω =−2π,−π/4,−π/8,0 [s−1] (a,b,c,d). All path lines are on the sphere (the depicted shadows), but we visualize the progression of
time as increasing radial distance and color (see inset). If these are seen as four different input fields v, minimizing the observed time derivative
D/Dt(v−u) gives observer fields u with rightward rotations ωωω = 2π,π/4,π/8,0 [s−1]. (d) Observer-relative visualization is the same for all four cases.

of Palacios and Zhang [50]. The notion of covariant derivative, which
we employ in our work, is inherently related to parallel transport.

Covariant derivatives have been used for mesh processing [18] and
computing vector [17] and direction [69] fields on surfaces. An impor-
tant focus is often their discretization on triangle meshes [5], e.g., by
using discrete exterior calculus [18]. We discretize on triangle vertices
in 2D charts, and particularly focus on fully intrinsic 2D computations.

Interpolation. We use standard barycentric interpolation in trian-
gles. However, spherical barycentric coordinates, i.e., mean value coor-
dinates on the sphere, could also be used for better interpolation [38].

Killing vector fields on (Riemannian) manifolds [19] correspond to
their infinitesimal isometries. Their flows correspond to the intrinsic
isometries of a manifold. Basics of Killing fields for curved surfaces
are discussed by Ben-Chen et al. [9] and by Solomon [57]; a more ad-
vanced treatment is given by Petersen [53]. Approximate Killing fields
have been used to compute approximate intrinsic isometries of curved
surfaces [9], or to design approximate Killing fields on meshes [4, 5].
As-rigid-as-possible shape interpolation methods [1] work directly with
isometries instead of with derivatives, and are computed extrinsically.

Observers. The concept of an observer as well as that of objectivity
in Euclidean space has been recognized to be of importance in fluid me-
chanics [31] as well as in flow visualization [28]. A standard reference
in continuum mechanics is Truesdell and Noll [65], whose definition
for objectivity in Euclidean space is used often [7, 25, 31, 32, 34, 48].

Vortex detection and frame invariance. Vortices are an important
topic in fluid mechanics [54] and in flow visualization [28]. Many vor-
tex detection methods were originally defined for steady flow, such as
Sujudi and Haimes [61], and were later extended to unsteady flow [70].
Galilean invariance of these critera is considered to be important [28].
Several known methods are Galilean-invariant, such as Weinkauf et
al. [70], or the method of Bujack et al. [13]. The latter jointly considers
multiple observers for 2D flow fields. Specific vortex detectors have
been developed to be objective by design [31,32]. Günther et al. [7,25]
present objective methods for Euclidean space that are generic by build-
ing on optimization, making non-objective vortex detectors objective.
Other kinds of invariance have been defined, particularly for flow fields,
such as rotation invariance [26], or hyper-objective vortices [27].

Flow decomposition methods, such as variants of the Helmholtz-
Hodge decomposition [10, 11], can also be used to remove background
flow, corresponding to the harmonic component [12]. These decompo-
sitions can be computed on curved surfaces [64]. However, they apply
only to time-independent fields, or alternatively they have to be applied
to each time step individually, without considering time derivatives.

3 BACKGROUND AND NOTATION

Our intrinsic framework enables all computations, most importantly the
optimization of observer fields, to be 2D for curved surfaces, instead of
requiring 3D ambient space computations. We perform all computa-
tions in an atlas of 2D coordinate charts (Fig. 4). This also simplifies
visualization computations on curved surfaces, by working directly in
charts, for example for path line integration or Line Integral Convolu-
tion (LIC), as depicted in Fig. 3. However, already a surface as simple
as a sphere cannot be covered by a single chart. All computations in
charts therefore need to be independent of the choice of coordinates.
We ensure this invariance by using general tensor methods [24], with
the corresponding transformation rules for transitions between charts.

Vector fields. A smooth vector field v on a manifold M is a smooth
function giving a vector v(x) at every point x ∈M on the manifold, i.e.,

v : M→ T M,

x 7→ v(x).
(2)

T M refers to the tangent bundle of M, the manifold of all tangent spaces
of M, and a vector field is also referred to as a section of T M. Most
important, v(x) is an element of the tangent space at x, denoted by TxM.
Where no confusion arises, we also denote a single vector v(x) by v.

Coordinate charts map open subsets U ⊂M of an n-dimensional
manifold M to Rn. Coordinates on a curved manifold M are thus not
given by coordinate vectors, which is only possible in linear spaces,
but for each chart by n coordinate functions {xi}, with each xi : U →R.
For example, for n = 2, the coordinate functions x1,x2, or, sometimes,
u,v. In contrast, basis vectors live in each tangent space TxM, at x ∈M.

Bases. Vectors are geometric objects independent of any chosen
basis. In order to refer a vector v to a basis, we expand it in components
as v = vi ei, where {ei} is a basis for TxM, and, in general, the TxM at
different x ∈M have different bases. We employ the Einstein summa-
tion convention [22, p.59], implying summation over indices occurring
twice (once “upstairs” and “downstairs” each), e.g., vi ei := ∑i vi ei.

Dual bases. We will also need the concept of a dual basis {ω i},
where ω i(e j) = δ i

j, with the Kronecker delta δ i
j = 1 if i = j, and

zero otherwise. Each ω i is a covector, or 1-form, which is a linear
function mapping a vector to a scalar. The dual basis {ω i} reads off
the components of a vector v referred to {ei}, such that v = ω i(v) ei.

Metrics. Lengths and angles of vectors are determined in an intrinsic
manner by defining a (Riemannian) metric g on M [19, p.35], which is
a second-order tensor field defining an inner product 〈v,w〉 := g(v,w)
on each TxM, varying smoothly over M. The vector norm is then
defined as ‖v‖ := 〈v,v〉1/2. Computations with g can use components
gi j := 〈ei,e j〉 referred to {ei}, computing 〈v,w〉 as gi jviw j. We also
extensively use covariant derivatives compatible with a given metric g.

Velocity gradients. An important derived quantity of a velocity vec-
tor field v is the velocity gradient tensor field ∇v. In flow visualization,
∇v is often seen as a Jacobian ∂ jvi of partial derivatives in Cartesian co-
ordinates. However, these coordinates do not exist in curved spaces, and
in general ∇v 6= (∂ jvi)ei⊗ω j, since ∂ jvi is not tensorial [22, p.241].

chart

metric
Fig. 4. Our intrinsic framework employs a perspective from within a
curved manifold M. Thus, all computations on curved surfaces are 2D
computations in 2D coordinate charts. Each point x ∈ M has intrinsic
differential properties: A (Riemannian) metric, and covariant derivative
operators. A vector field v is a vector v(x) in each tangent space TxM.
Per chart, each TxM has a coordinate basis {ei}, and a dual basis {ω i}.
The symmetric metric tensor field is visualized with glyphs on the right.



We note that even in flat R2 with polar coordinates, ∂ jvi is not a tensor.
This has important implications, such as that a tensor that vanishes in
one coordinate system must vanish in all coordinate systems [24, p.82].
This is not true for ∂ jvi, and thus the Jacobian behaves only as it should
in special cases, such as by restriction to Cartesian tensors [2, Ch.2].

Our framework requires a more general definition of ∇v as the
covariant derivative ∇ jvi, which is standard in mathematical physics.
However, we have found no explicit use of this concept in the flow
visualization literature. We derive this notion for our purposes in Sec. 6.

Approximate observer Killing fields. In general, an observer field
is allowed to be given by an arbitrary vector field u. However, it makes
sense to restrict the motion described by u to be “as rigid as possible.”
We therefore optimize observer fields such that they correspond to
approximately isometric deformations, i.e., to “almost-rigid” motions.
In the same vein as Hadwiger et al. [30], we minimize the rate-of-
deformation tensor of u. However, in curved spaces M this computation
requires using the covariant derivative ∇u, and the metric g on M.

4 OBSERVERS IN CURVED SPACES

The first crucial notion for us to define is the meaning of an observer in
a curved space. In analogy with the standard notion of observer trans-
formations in Euclidean space [65], it is natural to consider observer
transformations to in general be time-dependent distance-preserving
transformations of the underlying space, i.e., time-dependent isome-
tries. In the general case, however, we have to consider the intrinsic
isometries of a smooth manifold M with metric g,1 corresponding to
geodesic distances instead of Euclidean distances. Generally stated,

Remark. We employ a (non-relativistic) concept of frames of reference
postulating that all observers agree on the pairwise spatial geodesic
distances of events happening at the same time, and all observers also
agree on the time difference between events (i.e., time is absolute).

Observer transformations are therefore time-dependent intrinsic dis-
tance-preserving transformations. Mathematically, we model these
observer transformations as paths t 7→ g(t) ∈G, through a Lie group G,
chosen as the isometry group G := Isom(M) of the manifold M with
metric g. In our framework, we often also work directly with the deriva-
tives of g(t), forming the corresponding path t 7→ X(t) ∈ g through the
Lie algebra g= isom(M), the Lie algebra of infinitesimal isometries.

4.1 Observers on the Sphere
Figs. 2 and 5 illustrate this idea for M = S2, the standard two-sphere.
The motion of the Earth relative to a fixed observer, such as the airplane
in Fig. 2, is given by a path of isometries t 7→ g(t) ∈ SO(3), which here
are different rotations of the Earth. At any instant in time t, the deriva-
tive of this path corresponds to a Lie algebra element X(t) ∈ so(3),
which defines an infinitesimal isometry of M. However, X(t) is just
an anti-symmetric matrix (Fig. 5, bottom). The specific correspond-
ing infinitesimal isometry of the sphere is given by an isomorphism
between so(3) and the Lie algebra of Killing vector fields on the sphere
(Fig. 5, top). This isomorphism is mathematically described by a Lie
algebra action (see App. J). In this way, the infinitesimal isometry on
the surface of the Earth is the Killing vector field x(t) corresponding to
X(t). At each point x ∈M, this gives a relative velocity vector x(x, t)
(Fig. 5, top). We also know that x describes an infinitesimal isometry
of M, because ∇x, as the covariant derivative of x, is anti-symmetric.2
In fact, any Killing field x is uniquely determined by its value x(x) and
covariant derivative (∇x)x at one point x ∈M [53, Proposition 8.1.4].

4.2 Observer Fields
Generalizing further from the concept of one observer, as one time-
dependent isometric transformation of space, we want to be able to
describe an observer field—many observers—on a manifold M as a
vector field u on M, where u does not necessarily correspond to an
exact (infinitesimal) isometry. One of the most important properties of

1A (Riemannian) metric g is required to define the meaning of isometry.
2It is important to note, however, that checking ∇x for anti-symmetry needs

to be done with care, because it is a tensor of mixed type. See Sec. 7.1.

Fig. 5. Killing vector fields give the infinitesimal isometries of a manifold
M, here the sphere S2. The Lie algebra elements X ,Xi ∈ so(3) (bottom)
generate the Killing fields x,xi on M (top) through their Lie algebra action.
Like the matrices Xi, the Killing fields xi are linearly independent, forming
a basis of the Lie algebra of Killing fields on S2. That is, as we can
expand X = aX1 +bX2 + cX3, we likewise get x = ax1 +bx2 + cx3, where
the latter means point-wise addition of vectors in each TxM at each x ∈M.

such an observer field u is that we can compute it such that it minimizes
the observed time derivative (D/Dt)(v−u), given an arbitrary input
vector field v, whose time-dependent behavior we want to “follow.”

The second important property of an observer field u is that if u is
indeed a Killing vector field, it in fact describes a single observer, as
defined above. Typically, we want to optimize the vector field u such
that it describes observers that are as similar as possible. We do this by
quantifying how much (or how “fast,” in terms of spatial distance) the
observers differ from one global isometry, by computing the Killing
energy of the vector field u over M. This is the integral∫

M
Eu dA. (3)

The point-wise energy term Eu is given by Eq. 29. Eq. 3 is a scalar
measure for how much u differs from an infinitesimal isometry on M.
See Hadwiger et al. [30] for a more detailed rationale in Euclidean
space. In this work, we now generalize this concept to curved spaces.

4.3 Feature-Relative Visualization
Fig. 1 and Fig. 6 illustrate how the computation of an observer field on
the surface of the Earth enables focusing a visualization on a feature
such as a hurricane. In this example, the input field v(x, t) is given by
a time-dependent global wind data set from the European Copernicus
project. The top row of Fig. 6 shows path lines following the motion of
the hurricane over time. In this frame of reference, it is hard to compare
features of the hurricane “in place,” due to its motion. In contrast,
the bottom row of Fig. 6 shows a visualization that is relative to an
automatically computed observer field u(x, t), following the motion
of the hurricane. Since now a “feature-centric” observer is used, the
hurricane has become steady. (Now the Earth is moving, relative to the
new observer, underneath the hurricane.) Path lines seeded at the same
positions as before now clearly highlight the vortex of the hurricane.

5 OBJECTIVITY IN CURVED SPACES

Given a particular observer transformation t 7→ g(t) ∈G, it is natural to
define that a tensor field is objective if it simply undergoes the same
transformation as the observer. Because we model all possible observer
transformations as paths through a continuous symmetry group G, i.e.,
a Lie group, we can now rigorously formulate a generalized concept of
objectivity for arbitrary manifolds M in a fully intrinsic manner, using
the concept of group action on M with a Lie group element g ∈ G.

We first summarize the definition of Truesdell and Noll [65], which
is standard in continuum mechanics [34, 48], but is restricted to Eu-
clidean space. We then introduce our completely general definition that
includes curved spaces, but is equivalent in Euclidean space. App. D
derives the definition of Truesdell and Noll more generally, illuminating
the correspondence between their approach and ours in more detail.

5.1 Objectivity in Euclidean space
Truesdell and Noll [65, p.41] define objectivity with respect to a change
of reference frame in R3 via the distance-preserving transformation

x∗ = c(t)+Q(t)x,
t∗ = t−a.

(4)
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Fig. 6. Feature-centric visualization of hurricane Isabel. (a,b) Path-
lines in the original flow field. (c,d) Observer-relative pathlines; the
hurricane appears steady. (a,c) First time step. (b,d) Last time step.
From (c) to (d), the Earth has moved underneath the steady hurricane.

Q(t) is a proper orthogonal tensor (a rotation), c(t) is a point (position
vector), and a ∈ R. This transformation assumes absolute time. It is
thus sufficient to consider a = 0, disregarding time shifts, giving t∗ = t.

With respect to this transformation, a scalar field is objective if it is
unchanged; a vector field v is objective if it transforms according to
v∗ = Q(t)v; a second-order tensor field S, as a linear transformation of
vectors, is objective if it transforms as S∗ = Q(t)SQ(t)T [65, p.42].

This entire definition depends on the domain being Euclidean: points
are position vectors; the difference between two points is a vector; all
tangent spaces are copies of R3 with trivial parallel transport. This
definition is therefore not valid for non-Euclidean (curved) manifolds.

5.2 Generalization of Objectivity
To generalize objectivity, we define this concept as a general notion
of tensor fields being invariant with respect to a continuous symmetry
group G, which is a Lie group. (Symmetry refers to a notion of being
the same.) For example, if the group G is chosen as the isometry group
of a (Riemannian) manifold, two tensor fields are “the same” if they
are isometric. Two fields being symmetries of each other then means
that there exists a group element g ∈ G, such that the transformation
rules given below hold. Then, given any time-dependent observer
transformation t 7→ g(t)∈G, a given tensor field is objective if, for each
fixed t, it simply follows the corresponding transformation g := g(t).

5.2.1 Symmetry groups and group actions
Our notion of symmetry corresponds to the transformation behavior
under a group action Φ, with a given Lie group element g∈G, where G
is the chosen symmetry group. An action Φ, specifically a smooth left
action, of a Lie group G on a manifold M, is a smooth map [33, p.209]

Φ : G×M→M,

(g,x) 7→Φ(g,x),
(5)

such that for every g ∈ G, the map

φg : M→M, with φg(x) := Φ(g,x), is a diffeomorphism. (6)

Here, we focus on the general use of group actions Φ in our context,
and defer details to later sections. For now, it is sufficient to understand
that the diffeomorphisms φg will correspond to the flows of specific
vector fields on M. These vector fields are generated by the action of
the Lie algebra g of the Lie group G on M. See App. J for details.

For example, if G is the group of all diffeomorphisms of M, these
vector fields are all possible (smooth) vector fields on M. The important
case for our framework is choosing the group G as the isometry group
of M. The corresponding vector fields are then the Killing vector fields
on M, whose flows correspond to the isometries of M. See Sec. 7.

To obtain a generalized definition of objectivity, a crucial property
of the diffeomorphism φg is that it enables us to use the corresponding
differential, or pushforward. See Fig. 7. The pushforward is a map

dφg : T M→ T M, (7)

where each (dφg)x at a point x ∈M is a linear map

(dφg)x : TxM→ Tφg(x)M,

v 7→ (dφg)x(v).
(8)

The notation (·)x means that the quantity in parentheses is located at
x ∈M, and TxM denotes the tangent space at x. We can simply imagine
that the diffeomorphism φg transforms curves on M, and the differential
dφg transforms their tangent vectors accordingly. See also App. U.

In components, the map (dφg)x at any x ∈M can be given by the
corresponding n×n matrix. See Fig. 7 for the case of a sphere (n = 2).

Euclidean space. When φg is an isometry of M = R3, the pushfor-
ward dφg is a globally constant proper orthogonal (rotation) tensor Q,
i.e., (dφg)x = Q, with the same Q at all x ∈M. See O’Neill [49, p.107].

Curved spaces. In general, however, the linear map (dφg)x is differ-
ent for different points x ∈M. In components, each (dφg)x can still be
given by a matrix, but it will be a different matrix for each point x ∈M.

5.2.2 Objective scalar fields

Being objective should mean invariant under transformation, which for
scalar fields is trivial. We therefore define that a scalar field f : M→ R
on a manifold M is objective when, under any diffeomorphism φg,
given by the group action Φ of a symmetry group G, it transforms as

f ∗
(
φg(x)

)
= f
(
x
)
. (9)

Abbreviated, we could write f ∗ = f , but it is crucial to note that f ∗ is
evaluated at the point φg(x), whereas f is evaluated at the point x.

5.2.3 Objective vector fields

We now define that an arbitrary vector field v on a manifold M is
objective (with respect to a given symmetry group G), if, under the
corresponding group action Φ with any g ∈ G, it transforms as

(v∗)φg(x) = (dφg)x
(
v
)
. (10)

We emphasize that v∗ is an element of the tangent space Tφg(x)M,
whereas v is an element of TxM. Likewise, it is important to note that
the differential (dφg)x is a linear map defined on TxM. We can say

Remark. A vector field is objective, if it is simply pushed forward by
any diffeomorphism φg, defined according to the group action Φ. This
definition of objectivity is valid for any smooth manifold where a notion
of (smooth) symmetry is defined by a (smooth) symmetry group G.

Abbreviated transformation rule. For brevity, we can define the
action Φ, with g ∈ G, on any vector field v on M, by the differential in
Eq. 8, and abbreviate the objectivity criterion of Eq. 10 simply as

v∗ = gv. (11)

However, it is crucial that the meaning of the transformation represented
by g ∈ G in this shorthand notation is given by Eq. 10. In general, g
cannot be mapped to the same globally defined matrix, corresponding to
the pushforward dφg, even though this is possible in the Euclidean case.
Nevertheless, this abbreviated form makes it easy to see the analogy
with the definition of Truesdell and Noll. In Euclidean space, the two
are equivalent. See App. D for more details. Our definition, however,
gives a well-defined notion of objectivity for arbitrary manifolds M.



5.2.4 Objective tensor fields
The definition above for objective vectors generalizes to arbitrary tensor
fields T, in the way that is derived in full in App. A. Here, we derive the
common special case of a second-order tensor field S, interpreted as a
linear map of vectors, i.e., S : T M→ T M,v 7→ S(v). Such a

(1
1
)

tensor
field is objective, if under the group action Φ with g it transforms as

(S∗)
φg(x) (v

∗) = (dφg)x
(

S
(
(dφg−1)φg(x)(v

∗)
))
. (12)

The pushforward dφg−1 of the diffeomorphism φg−1 maps v∗ from
Tφg(x)M to the corresponding v in TxM according to Eq. 10 (inverted),
and then applies Eq. 10 again to S(v). φg−1 is the inverse of φg, meaning
φg−1(φg(x)) = φg−1g(x) = φe(x) = x. As in Eq. 11, we can abbreviate

S∗ = gSg−1. (13)

However, it is again crucial to note that the meaning of this rule is given
by Eq. 12. Fig. 7 illustrates how the pushforwards of φg and φg−1 map
tangent vectors between the tangent spaces Tφg(x)M and TxM.

We note that to prove objectivity of the Killing operator K (Eq. 25),
which we use for computing observer fields, the general definition of
objectivity from App. A is required, since Ku is a

(0
2
)

tensor (App. F.1).

5.3 Objectivity for Intrinsic Isometries
To realize the notion of observer transformations as isometric transfor-
mations of the underlying space in the general mathematical framework
given above, we now consider the group G := Isom(M), i.e., the isome-
try group of the manifold M. The group action Φ is an isometry, with
respect to a given metric g, i.e., a smoothly varying inner product 〈·, ·〉,
on M, if for all g ∈G, and for any two vector fields v,w on M, we have〈

(dφg)x(v),(dφg)x(w)
〉

φg(x)
=
〈
v,w

〉
x. (14)

As a direct consequence of Eq. 14 holding for the map φg, we get that
for any vector field v that is objective according to Eq. 10, we have

‖v∗‖φg(x) = ‖v‖x. (15)

Infinitesimal isometries and Killing vector fields. Computationally,
instead of working with isometries directly, we work with their deriva-
tives, which are infinitesimal isometries, corresponding to the Killing
fields on M. See Sec. 7. To describe Killing fields efficiently, we need
the intrinsic velocity gradient tensor ∇v of a velocity field v on M.

6 GENERAL VELOCITY GRADIENT TENSORS

For any smooth vector field v given on a manifold M, the velocity
gradient tensor ∇v is a second-order tensor field on M that allows
computing directional derivatives of the vector field v in any direction.

In Cartesian coordinates, ∇v can simply be defined by partial deriva-
tives ∂ jvi. However, this definition cannot be used for intrinsic com-
putations on curved manifolds, because ∂ jvi is in general not a tensor.
For a curved (or flat) manifold M, the tensor ∇v can, however, always
be computed intrinsically as the covariant derivative of v [22, p.241].

Fig. 7. The pushforward of a diffeomorphism φg is a linear map between
the tangent spaces TxM and Tφg(x)M. That is, the pushforward (dφg)x

maps a tangent vector v ∈ TxM to the vector (dφg)x (v) ∈ Tφg(x)M. The
pushforward (dφg−1 )φg(x) maps a tangent vector in the opposite direction.
In components, for a two-manifold M, each pushforward is a 2×2 matrix.

6.1 Intrinsic Covariant Derivatives
The covariant derivative ∇v of a vector field v on a manifold M is a
second-order tensor field on M, which, at any x ∈M, maps an arbitrary
vector x ∈ TxM to the derivative of the field v in the direction x, i.e.,

(∇v)x : TxM→ TxM,

x 7→ ∇xv = (∇v)x (x) .
(16)

This notation means that the covariant derivative of a vector field v,
evaluated in the direction x, is the vector ∇xv, which we get by com-
puting ∇v(x). We can refer ∇v to a basis {ei⊗ω j}, with ⊗ the tensor
product, and write the components as n×n matrix ∇ jvi, with row and
column indices i, j, respectively, and n the dimension of M, i.e., for
a curved surface n = 2. However, unless the manifold M is flat and
Cartesian or affine coordinates are used, ∇ jvi 6= ∂ jvi. The difference is
a connection on M [22, p.242], corresponding to a notion of parallel
transport [19, p.52] of vectors. The connection can be given in compo-
nents via Christoffel symbols Γi

jk, and we get for ∇v in components,

∇ jvi := ∂ jvi +Γ
i
jkvk. (17)

In flat space with Cartesian or affine coordinates, all Christoffel symbols
vanish [24, p.72] (Γi

jk ≡ 0), but only in this special case is ∇ jvi = ∂ jvi.
The Γi

jk determine the covariant derivatives of the basis vector fields
{ei}, at each point x ∈M, referred back to the same basis {ei} at x, i.e.,

∇e j ek = Γ
i
jk ei, and therefore Γ

i
jk = ω

i(
∇e j ek

)
. (18)

We note that although Γi
jk comprises n3 components, it is not a (third-

order) tensor [24, p.82]. In general, a connection needs to be chosen [19,
p.50]. We employ the Levi-Civita connection,3 which can be derived
intrinsically from the metric of M [22, p.229]. See App. O, Eq. O.10.
Even more easily, if we know an immersion of M into an ambient space
Rm, as for a curved surface immersed in R3, we can obtain the Γi

jk as

Γ
i
jk = ω̃

i(
∂ j ẽk

)
. (19)

The tilde symbols denote ambient space (co)vectors, e.g., for M with
n = 2 and ambient m = 3, {∂ j ẽk} comprises four 3D vectors, and {ω̃ i}
comprises two 3D covectors. It is crucial that the {ω̃ i} are chosen such
that they correspond to orthogonal projection from Rm onto the tangent
plane of the surface. See App. Q for a complete calculation for a simple
atlas of charts for the sphere. The Levi-Civita connection given by
this choice of Γi

jk corresponds to the metric on M that is induced by
the immersion of M into the ambient space Rm [19, p.39]. Crucially,
however, the resulting Christoffel symbols are nevertheless intrinsic.

7 ISOMETRIES AND KILLING FIELDS IN CURVED SPACES

Our framework requires an efficient mathematical description of the
intrinsic isometries of the manifold M. A powerful way to do this is
to work with the derivatives of diffeomorphisms that are isometries,
i.e., to consider infinitesimal isometries. These correspond to specific
vector fields on the manifold M, which are called Killing vector fields.

A vector field u is a Killing vector field on M, if the flow φt (App. T)
that it generates preserves the metric g on M. The most general way of
stating this mathematically is to require that the Lie derivative (App. G)
of the metric g, with respect to u, must vanish everywhere on M. I.e,

Lu g = 0. (20)

This means that for all x ∈M, we have (Lu g)x = 0. See [46, p.250].
The set of all possible Killing vector fields on a given (Riemannian)

manifold M constitutes a Lie algebra, which is, in particular, a vector
space. This enables us to consider the dimensionality of the set of

3This is the unique metric-compatible connection, corresponding to a given
(Riemannian) metric g on the manifold M, that has zero torsion [22, p.242].



(a) (b) (c) (d) (e)

Fig. 8. Rotating four centers relative to three different observers. Path lines seeded close to the four centers are shown in space-time as in Fig. 3.
(a) Observer rotating counter-clockwise around the center point between the four vortices. (b) The observer rotation in (a) is automatically removed
relative to an optimized observer field u, which corresponds to clockwise rotation: the four centers appear steady. (c) The field in (a) relative to an
observer rotating around the vertical axis. (d) The observer field u (path lines) optimized for the field in (c). (e) The field in (c) relative to u from (d).

Killing fields on M, and to write any Killing field as a linear combi-
nation of basis Killing fields. Fig. 5 shows an example on the sphere.
Apps. L and M describe the isometries of the two-sphere in detail, with
full calculations. App. K gives more details on Killing vector fields on
curved surfaces in general. However, for computing observer fields via
optimization (Sec. 9), as the most important part of our framework, we
directly evaluate Killing’s equation on the unknown vector field u.

7.1 Killing’s Equation
A vector field u = ui ei is a Killing field, if an equation known as
Killing’s equation holds at all x ∈ M [22, p.529]. However, in its
general form this equation is given for covectors, with components ui,
and not for vectors, with components ui. The ui can be computed as
ui = gi ju j [24, p.88], using a metric g, referred to components gi j.

Killing’s equation is then given as

∇ jui +∇iu j = 0. (21)

This is the same as ∇u being anti-symmetric, which is the same as
〈∇u(x),x〉= 0 for all x. However, in general it is not correct to simply
check whether a component matrix of ∇u is anti-symmetric, because
∇u is a tensor of mixed type (contravariant and covariant indices).
Therefore, Eq. 21 is given using the covariant derivative of a covector
field [24, p.108]. In components, referred to a basis {ω i⊗ω j}, this is

∇ jui := ∂ jui−Γ
k
i juk. (22)

We can introduce the vector components ui directly, and write Eq. 21 as

∇ j
(
gikuk)+∇i

(
g jkuk)= 0. (23)

Applying the product rule for covariant derivatives [24, p.119], we
get ∇ j

(
gikuk)= (∇ jgik)uk +gik∇ juk = gik∇ juk, because the covariant

derivative of the metric vanishes.4 Therefore, Eq. 21 is equivalent to

gik∇ juk +g jk∇iuk = 0. (24)

In matrix notation, we can therefore rewrite Killing’s equation as the
vanishing of the differential “Killing operator” K applied to the field u,

Ku := g∇u+
(
g∇u

)T
= 0. (25)

The tensor Ku is still a
(0

2
)

tensor, just like (∇ jui +∇iu j). However,
Eq. 25 implies that now we can simply check any matrix representation
of g∇u for anti-symmetry, to determine whether u is a Killing field.

7.2 Killing Energy
If the expression Ku is not exactly zero, in order to quantify how close
to being Killing an arbitrary vector field u is, we use the tensor norm
of the tensor Ku to define a scalar Killing energy (see also [9, Def. 5]).
As for vectors, the tensor norm of a higher-order tensor T is defined as

‖T‖2
g := 〈T,T〉g. (26)

However, the tensor inner product required here, between two covariant
second-order tensors T,S, is given by the double contraction [45, p.82]

〈T,S〉g := gikg jl TklSi j = T i j Si j. (27)
4This (∇g = 0) is the definition of a metric connection [22, p.242].

This is similar to the Frobenius inner product tr(TT S) of matrices,
which determines the Frobenius norm tr(TT T)1/2. The crucial differ-
ence here is that because pairs of covariant and contravariant indices
are contracted, Eq. 27 is an invariant tensor expression, giving the same
result in all coordinate systems. 〈T,T〉g = T i j Ti j thus is the square of
the norm. In matrix notation, we can write the inner product above as

〈T,S〉g = tr
(

g−1 TT g−1 S
)
. (28)

We define the Killing energy Eu, of the field u, at a point x ∈M, as

Eu :=
∥∥Ku

∥∥2
g =

〈
Ku,Ku

〉
g. (29)

Sec. 9.1 defines the Killing energy of M as the integral of Eu over M.
Eq. 29 is then the density of the Killing energy of M per unit area.

8 OBSERVED TIME DERIVATIVES IN CURVED SPACES

The observed time derivative defined in Eq. 1 measures the differ-
ential change of a tensor field with respect to the motion of a given
observer field u. We note that D/Dt is, in fact, the time-dependent
Lie derivative [45, p.95] with respect to the flow of the field u. The
crucial difference here is the semantic meaning of an observer field u,
as an intrinsic part of our operator. Our most important use of D/Dt is
applying it to the relative velocity field (v−u), which we minimize to
compute the unknown observer field u (Sec. 9). We get (Lu u = 0),

D

Dt
(v−u) =

∂v
∂ t
− ∂u

∂ t
+Lu v,

=
∂v
∂ t
− ∂u

∂ t
+∇v(u)−∇u(v) .

(30)

Lie derivatives in curved spaces. A basic property of Lie derivatives
is that they are independent of the metric g defined on the manifold M,
and likewise independent of the connection on M [45, p.96]. That is,

Lu v = ∇v(u)−∇u(v) ,

=
(

∂ jviu j−∂ juiv j
)

ei.
(31)

The expansion in components in the second row above comprises only
partial derivatives. The full derivation is given in App. H. Thus, the
observed time derivative can be derived solely from partial derivatives,
even when the manifold M is curved, including the Lu term in Eq. 30.

9 COMPUTING OBSERVER FIELDS

We compute a global observer field u on any two-manifold M with
multiple charts using one global linear least-squares solve. The use of a
single global sparse linear system is enabled by “baking” all transition
maps (their Jacobian matrices) between charts into the system matrix.

9.1 Objective Function

Our optimization is conceptually very similar to the approach of Had-
wiger et al. [30] for Euclidean space. However, all differential operators
have to be substituted by their generalized version for arbitrary mani-
folds, i.e., covariant derivatives, Lie derivatives, and tensor norms.



We formulate a global optimization problem to find an observer
field u, from the space of all possible fields in some function space V
of vector fields (e.g., Cn fields) on the manifold M, as the minimizer of

min
u∈V

1
2

∫ tmax

tmin

∫
M

(
E +λ D+µ R

)(
u,x, t

)
dAdt. (32)

Here, dA is an infinitesimal area element of M at a point x ∈M, and the
constants λ ,µ ∈ R are relative weights. The individual terms are

E (u,x, t) :=
∥∥Ku(x, t)

∥∥2
g, (33)

D(u,x, t) :=
∥∥∥∥ D

Dt
(v−u)(x, t)

∥∥∥∥2

g
, (34)

R(u,x, t) :=
∥∥(v−u)(x, t)

∥∥2
g. (35)

The integral of E over the domain gives the Killing energy
∫

M Eu dA of
the observer field u on M. || · ||g denotes the tensor and vector norms,
respectively, depending on the argument, with respect to the metric g.

Discretization. To solve Eq. 32, we discretize the manifold M with
a triangle mesh. Vector components are stored at the vertices, and we
label the corresponding points on the manifold M with x1,x2, . . . ,xN .

The Killing energy term E (Eq. 33) is computed by discretizing the
Killing operator K (Eq. 25), to compute the covariant derivative terms
of ∇u in Eq. 25. The weights for all differential operators to evaluate
Ku are stored in a matrix K. We compute partial derivatives via triangle
vertex 1-ring neighborhood stencils, computing weighted averages of
function values at the mesh vertices. The weights are independent of
the actual function values, and can therefore by pre-computed for a
fixed mesh geometry and be used for any function on M. See App. R.

The observed time derivative term D (Eq. 34) is computed from
partial derivatives alone (Eqs. 30 and 31). We compute time deriva-
tives via central differences (in t) on each vertex. The weights for all
differential operators to compute D are stored in a matrix D. The regu-
larization term R (Eq. 35) is represented by a matrix N, which is simply
an identity matrix times −1, to compute −u. All terms involving the
(known) input field v are pre-computed and stored in the corresponding
locations of the matrices K, D, and the right-hand side b (see below).

9.2 Global Least-Squares Solution
To solve Eq. 32, we are looking for the minimizer of the least-squares
problem minu

1
2 ||Au−b||2g, with matrix A and vector b as given below.

The least-squares solution, weighted with the metric g, is the solution
of the normal equations of the weighted least-squares problem given
by the square, positive-definite system AT WAu = AT Wb, with

A :=

K
D
N

, W := M ·

Ḡ 0 0
0 λ ·G 0
0 0 µ ·G

, b :=−

 0
∂v
∂ t
v

 . (36)

The matrix M is diagonal, with weights giving the area on M assigned
to each vertex element xi, discretizing integration over area elements dA.
The other blocks of the matrix W encode g on M, given by the blocks

Ḡ:=


ḡ−1

x1
0 . . . 0

0 ḡ−1
x2

. . . 0
...

...
. . .

...
0 0 . . . ḡ−1

xN

, G:=


gx1 0 . . . 0
0 gx2 . . . 0
...

...
. . .

...
0 0 . . . gxN

. (37)

Here, gxi refers to the n×n component matrix gi j of the metric g at the
vertex xi ∈M. For efficient computation of the tensor norm ‖T‖g, we
use the following approach to convert the tensor inner product in Eq. 27
to a simple contraction of two first-order tensors. We introduce new
n̄-dimensional first-order tensors T̄, S̄, and a symmetric n̄-dimensional
second-order tensor ḡ−1, where n̄ := n2. That is, n̄ = 4 for n = 2. We
denote the n̄× n̄ components of ḡ−1 by ḡst , computed from gi j as

ḡst := gikg jl , s, t ∈ [1, n̄], (i, j) = σ
−1(s), (k, l) = σ

−1(t). (38)

The indices i, j,k, l are given by the inverse of the indexing function

σ(i, j) := n · (i−1)+ j, with i, j ∈ [1,n]. (39)

We can use this to rearrange the tensor inner product, to obtain

T̄t := Tkl , with t = σ(k, l),

S̄s := Si j, with s = σ(i, j),

T̄ s = ḡst T̄t , and therefore,

T̄ sS̄s = ḡst T̄t S̄s = gikg jlTklSi j = T i jSi j.

(40)

Thus, the tensor inner product 〈T,S〉g (Eq. 27) can simply be computed
as the contraction T̄ sS̄s. Using this approach, the tensor norm of the
Killing energy in the least-squares problem given above is computed by
inserting the components ḡst (Eq. 38) of ḡ−1 into the matrix Ḡ above.

9.3 Multi-Chart Optimization
At each vertex xi ∈ M, there is only one vector for the field u. We
store vector components with respect to one selected chart for each xi.
However, finite differences to estimate derivatives (App. R) have to be
computed in the same chart, even when adjacent vertices are in different
charts. We enable this by “baking” all required chart transition maps,
i.e., the n×n Jacobian matrices transforming from the coordinate basis
of one chart to that of another chart, into the matrices K and D. The
elements of these matrices are inserted such that all finite differences
are computed using vector components referencing the same chart.
More details for implementing this approach are explained in App. S.

9.4 Objectivity of Intrinsic Observer Field Computation
Remark. The computation of the observer field u as the minimizer
of Eq. 32 is objective with respect to any observer transformation
t 7→ g(t) ∈G, with G = Isom(M) the isometry group of the manifold M.

We give proofs in App. F. Except point (4) below, the reasons for this
are quite intuitive and can be summarized as follows: (1) The norms
used in Eq. 32 are invariant under isometries, because by definition
any isometry does not change them (Eq. 14). (2) The Killing energy∫

M Eu dA is time-independent, and measures how much the field u dif-
fers from an infinitesimal isometry. Since observer transformations are
exact isometries of M, they do not change the Killing energy. (3) A time-
dependent observer transformation t 7→ g(t), which with G = Isom(M)
is a time-dependent isometry t 7→ φg(t) of M, changes any velocity field
on M by point-wise addition of the Killing field corresponding to the
derivative X(t) of the isometry. However, the Killing field that is added
due to the observer transformation cancels out in the relative velocity
field (v−u). (4) The objectivity of the observed time derivative (Eq. 1)
is far from obvious. However, Marsden and Hughes [45, p.101] prove
that the time-dependent Lie derivative of an objective tensor field with
respect to the flow of any vector field is objective. See App. F.3.

That is, the norm of all terms in Eq. 32 does not change under the
isometry t 7→ φg(t) of any observer transformation t 7→ g(t), and because
the minimizer of Eq. 32 is unique, as in [30], its computation is thus
objective with respect to the group action Φ of the isometry group of M.

10 RESULTS

We have implemented a general framework for flow visualization on
curved surfaces, given as triangle meshes, in C++, and OpenGL for
rendering. For the sphere, we use six very simple charts, as described
in detail in App. Q. We emphasize that the only 3D computations that
we use are for initially obtaining the metric of the sphere as a 2D tensor
field in each of the charts, and for visualization purposes in OpenGL.
All our vector fields are given via 2D components, and all computations
required for solving Eq. 32 are fully intrinsic in 2D. We solve the
least-squares system given in Sec. 9.2 by using the conjugate gradient
solvers provided by the C++ Eigen library, obtaining the minimizer u
in multiple iterations. We have also tried direct methods using matrix
factorization of the symmetric positive definite matrix AT WA. Due to
the size of our grids, conjugate gradients obtain the minimum faster.



Table 1. Data sets with grid/mesh resolution.
Data set # Vert. # Tri. Time Time Steps

SYNTHETIC VORTEX 10,242 20,480 0 . . .1s 100
SYNTHETIC FOUR CENTERS 10,242 20,480 0 . . .2π s 100

JUPITER VORTEX STREET 40,962 81,920 0 . . . π

2 s 300
EARTH FLOW 163,842 327,680 8 days 32

·EARTH FLOW (SUBDOMAIN) 32,400 64,796 8 days 32
·EARTH FLOW (ADAPT. RES.) 62,412 124,820 8 days 32

Data sets. Table 1 gives an overview of the data sets that we have
used in this paper and the video. We ran experiments with synthetic data
sets and with simulated data on the sphere. The optimizations are global.
For the earth flow data set we have, however, experimented with two
approaches for region of interest optimization to reduce computation
times. Table 2 gives computation times for the conjugate gradient
solves to optimize observer fields u. All computations were run on two
Intel Xeon E5-2600 processors with 16 cores running at 2.3GHz.

Visualization. We have adapted the observer-relative visualization
methods described by Hadwiger et al. [30] from Euclidean space to
curved spaces. Since we need coordinate charts to compute the op-
timization, we can also use them as texture parametrization for LIC
computations in texture space on the GPU. Corresponding to a given
observer field u, we compute LIC images of observed stream lines [30].
Likewise, we also compute the geometry of integral curves for observed
stream lines as well as for observed path lines. To visualize the time
parameter of path lines, we increase the radial distance from the sphere
according to the parameter t, scaled by a user-specified factor. This is
helpful to see the time evolution of path lines. Additionally, we draw
path line shadows on the sphere, to ensure that their position in space
can be correctly interpreted. Moreover, we visualize time-dependent
scalar fields relative to the observer field via color coding, and in the
same way show texture patterns, e.g., Earth or Jupiter textures. We
can dynamically switch the observer for any flow field, and directly
visualize the corresponding observed fields. Figs. 1, 6, and 9 show
observer-relative scalar fields (planet textures, vorticity magnitude), as
well as observed LIC. Figs. 3, 6, and 8 show observed path lines.
10.1 Synthetic Data Sets
Synthetic Vortex. We transform a steady input field of a simple vortex
into different time-dependent fields by rotating the input around the
vertical axis of a sphere at different angular velocities (Fig. 3). The
latter correspond to different scalings of the Killing field x2 in Fig. 5.

From each transformed, time-dependent input field, we compute
the corresponding observer field u via optimization. In all cases, the
minimizer u of Eq. 32 is a steady Killing field. The observer fields then
enable recovering the original steady vortex in Fig. 3 (d). Relative to
its observer field, each unsteady field becomes the original steady field.

Synthetic Four Centers. Fig. 8(a) shows four vortices that rotate
around each other clockwise, around a common point in the center
of the sphere. We show that the observer field u that is computed
automatically via optimization recovers a steady field for the four
vortices, as depicted in Fig. 8(b). In Fig. 8(c), we then observe the input
field in (a) relative to a leftward rotation around the vertical axis of the

(a) (b) (c)

Fig. 9. Planet-scale flow patterns observed using LIC. Vorticity is
color-coded on a red-blue CCW/CW scale. LIC is used to visualize
instantaneous velocities. (a) A vortex street at the equator. LIC cannot
show the vortices. (b) The globally optimized observer field that trans-
forms the flow field (a) into a near-steady flow field (c), which shows the
vortices in place while the planet is moving underneath instead. Note how
LIC of the instantaneous velocity field now clearly shows the vortices.

Table 2. Computation times for the observer field u.
Data set λ µ # CG Iter. Comp.-time

SYNTHETIC VORTEX 0.1 0 1,000 6s
SYNTHETIC FOUR CENTERS 1 0 10,000 78s

JUPITER VORTEX STREET 103 0 5,000 12min
EARTH FLOW (SUBDOMAIN) 1013 0 10,000 3min
EARTH FLOW (ADAPT. RES.) 1013 0 10,000 6min

sphere. Fig. 8(e) again depicts the field that is recovered automatically,
this time relative to an observer field u, shown in Fig. 8(d), that rotates
clockwise as well as rightward around the vertical axis of the sphere.

10.2 Global Planet-Scale Optimization
Jupiter Vortex Street. Fig. 9 depicts a 2D von Kármán vortex street
centered around the equator of Jupiter. We have generated this data
set for testing purposes by mapping a flat vortex street to a sphere by
directly mapping a Cartesian x-y grid to a latitude-longitude grid.

Earth Flow. For real planet-scale experiments we use open source
flow data from the EU Copernicus project. We use global wind data to
show that large phenomena like hurricane Isabel (2003) are automati-
cally tracked by the solution of our optimization problem, although no
explicit feature tracking is performed. Figs. 1 and 6 show the input flow
data and the observed flow fields. We are able to compute an observed
flow field that is nearly steady. To get an undistorted visualization that
is centered on the hurricane, we can pick one time-dependent Killing
field as the observer that travels with the hurricane. The resulting
visualization applies the inverse observer motion to the Earth texture.

10.3 Region of Interest Optimization
Our approach optimizes for the best observer field u with a global
optimization. However, often an optimization of the whole domain at
the same resolution level is not necessary, since the user might only
be interested in a smaller subdomain. We have tested two methods for
this case. We either select a subdomain and run the global optimization
only in this subdomain, or we adaptively remesh to obtain different,
adaptive mesh resolutions for different regions on the sphere, and then
run the optimization over the whole domain. The computation times
can be greatly reduced from a full-resolution grid either way (Table 2).

11 DISCUSSION AND CONCLUSIONS

We have presented the first objective, optimization-based framework for
computing time-dependent reference frames in curved spaces with the
goal of turning unsteady input flow fields into (nearly) steady fields rela-
tive to a global observer field. A major motivation for this approach is to
enable feature-relative visualization and analysis of the time evolution
of features, such as scalar and vector field attributes of hurricane simu-
lations, “in place.” A powerful example of this is shown in Fig. 1 (top
left), where the path of hurricane Isabel is simply a path line of the
automatically computed observer field u. We have seeded this path line
manually, but this could also be done algorithmically. Moreover, path
lines of u anywhere inside the core region of the hurricane follow the
general time-dependent diffeomorphism that constitutes the warping
domain of the hurricane. We believe that our mathematical framework
has great potential in applications such as studying features of interest
in climatology and oceanography in a reference frame-independent
way. Our method is objective, meaning that it is invariant with respect
to any isometric observer transformation of the input flow field. This
enables it to automatically follow the motion of features of interest,
and makes it independent of super-imposed motions, including those
of moving measurement devices capturing real-world geophysical flow
phenomena. Finally, we believe that the fully intrinsic approach that
we have taken, and the methodology from Riemannian geometry that
we have used in our framework, could provide significant advantages
and insight to other areas and applications of flow visualization as well.
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