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Abstract
The field of connectomics aims to reconstruct the wiring diagram of neurons and synapses to enable new insights into the work-
ings of the brain. Reconstructing and analyzing the neuronal connectivity, however, relies on many individual steps, starting
from high-resolution data acquisition to automated segmentation, proofreading, interactive data exploration, and circuit analy-
sis. All of these steps have to handle large and complex datasets and rely on or benefit from integrated visualization methods. In
this state-of-the-art report, we describe visualization methods that can be applied throughout the connectomics pipeline, from
data acquisition to circuit analysis. We first define the different steps of the pipeline and focus on how visualization is currently
integrated into these steps. We also survey open science initiatives in connectomics, including usable open-source tools and
publicly available datasets. Finally, we discuss open challenges and possible future directions of this exciting research field.

CCS Concepts
• Human-centered computing → Visualization systems and tools; Scientific visualization; • Applied computing → Life and
medical sciences; Systems biology;

1. Introduction

In recent years, neuroscience has made significant advances in
understanding the brain’s structure and function based on novel
high-resolution data acquisition techniques. Scientists aim to tackle
questions of brain physiology, how diseases of the brain develop,
and how the mind forms consciousness. The field of connectomics,
in particular, approaches these questions by looking at the detailed
connectivity between neurons at high-resolution to extract the
brain’s wiring diagram. The ultimate goal is to map and decipher a
human’s entire neuronal wiring, called the connectome [Seu12a].

Advances in tissue imaging such as high-resolution volume elec-
tron microscopy (EM) [BB12] enable this highly-detailed analysis
by allowing scientists to collect unprecedented amounts of neuronal
tissue data at nanometer resolution. This high-resolution data al-
lows scientists to reconstruct individual neurons and all their con-
nections (synapses) to other neurons. In addition, structural biolo-
gists and developmental neuroscientists are also interested in spa-
tial and neighborhood analysis of neurons and analyzing the struc-
tural plasticity of how synapses and neurons change over time.

One of the main challenges in connectomics is the amount of
data that scientists need to collect, process, and analyze. Even a
single cortical cubic millimeter of mouse brain tissue consists of
around 75,000 neurons and 523 million synapses [CBB∗21], mak-

ing brain connectivity exceptionally difficult to understand and an-
alyze. Only the advent of automated high-throughput imaging tech-
niques and automated computational segmentation tools have made
analyzing the neuronal connectivity within brain volumes of a cubic
millimeter or more now possible [YBB∗20, SCJB∗21, CBB∗21].
However, for neuroscientists to analyze these large and complex
3D datasets, they need scalable visualization methods throughout
the entire connectomics data processing pipeline (see Fig. 1) that
allow them to interact with their data intuitively and flexibly. For
example, visualization can be used for interactive image quality
assessment during the image acquisition stage [HHM∗17] or for
interactive proofreading of the segmentation data. Visualization is
also vital for data exploration, such as interactive spatial and con-
nectivity analysis tools.

This survey discusses how visualization and visual computing
can be integrated into the connectomics pipeline to help scientists
in analyzing their high-resolution and large-scale data volumes.

1.1. Survey Scope and Previous Surveys

This state-of-the-art report summarizes previous research and re-
cent developments in visualizing large, high-resolution biological
data volumes. We describe and categorize visualization methods
for each step of the connectomics pipeline, including novel ap-
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Figure 1: The connectomics pipeline: In this survey, we discuss visualization approaches for each step of the connectomics data processing
pipeline. Visualization is not just important for the final analysis step but vital for efficient image acquisition, registration, segmentation, and
proofreading of segmentations.

proaches to visual proofreading, large-scale volume exploration,
and connectivity-focused visualization methods.

In addition to the specific visualization methods, we refer to the
most relevant work in image acquisition, registration, and segmen-
tation. Furthermore, we discuss relevant topics in large-scale vol-
ume visualization and connectivity-focused visualization. We fur-
ther outline methods for quantitative analysis of spatial and con-
nectivity data and refer to relevant STARs in those areas.

We limit our discussion primarily to visualization-centered tech-
niques for high-resolution 3D light- and electron-microscopy data
that can depict individual neurons as well as individual synapses,
respectively. In contrast to a previous survey on visualization in
connectomics from 2012 [PKB∗12], the present work focuses on
micro- and nanoscale datasets and the visualization of individual
neurons and synapses. Developments in high-throughput data ac-
quisition and automatic segmentation have paved the way for novel
approaches to semi-automatic proofreading and connectivity-based
visual analysis at the level of individual synapses. These novel and
scalable visualization methods for micro- and nanoscale neuronal
structures differ significantly from previous macro-scale connec-
tivity visualization approaches, such as visualizing fiber tracts and
brain regions. The latter we do not discuss in this survey.

The most relevant previous surveys in the area of visualiza-
tion include a micro-, meso-, and macro-scale connectomics re-
port [PKB∗12], a survey on large-scale GPU-based volume vi-
sualization [BHP15], surveys on modern (scientific) visualiza-
tion on the web [MKRE16, FH20], and a survey on macro-
scopic brain circuit visualization [CSC18]. Other relevant sur-
veys include biomedical image registration [VMK∗16], segmenta-
tion [MBK∗19,LRL∗21], motif discovery in graphs [YFZ∗20] and
subgraph counting [RPS∗19].

1.2. Survey Structure

This survey gives an overview of the current state of the art in the
visualization and analysis of high-resolution neuronal data for con-
nectomics. We start with an introduction to fundamentals in neuro-
science in Section 2, outlining the biological background and the
connectomics data processing pipeline, from acquisition to analy-

sis. The remainder of our survey follows the different steps of the
connectomics pipeline.

Section 3 talks about data acquisition for microscale and
nanoscale datasets, as well as how visualization can support the
data acquisition process. Next, we discuss image alignment and
registration methods (Section 4) before outlining current methods
for semi-automatic and automatic image segmentation (Section 5).
To further improve segmentation results from automatic methods,
many different semi-automatic proofreading methods have been
proposed, which we discuss in Section 6.

While visualization approaches play a crucial role in all steps of
the connectomics pipeline, the exploratory analysis of registered,
segmented, and proofread volumes relies on many diverse visual
techniques. To this end, we discuss visual exploration and analy-
sis methods in Section 7. After outlining scalable data structures in
Section 7.1, we discuss methods for spatial exploration, including
approaches for large or segmented volumes, in Section 7.2. Next,
we outline visual methods for exploring neuronal connectivity in
these data volumes, going from node-link diagrams to more spe-
cialized neuron-centric views in Section 7.3. In Section 7.4, we dis-
cuss methods for a more quantitative analysis of neurons and spatial
neighborhoods, including visual query systems that interactively
drill into the data. Finally, we outline visualization methods used
for the communication of connectomics insights in Section 7.5.

To complete this survey, we provide a list of popular and pub-
licly available datasets, as well as open-source tools to help fos-
ter future research in connectomics and visualization in Section 8.
We also list datasets, tools, and surveyed papers on our web-
site (connectomics-vis-survey.github.io). Finally,
we look at future trends and open problems in Connectomics vi-
sualization in Section 9 and conclude in Section 10.

2. Neuroscience Fundamentals

We first introduce the fundamentals in neuroscience to clarify the
most important biological concepts for connectomics. Then, we
outline the connectomics pipeline, which is the typical data acqui-
sition and processing workflow in connectomics research.

Modern neuroscience began around the end of the 19th century
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Figure 2: Cajal’s original drawing of neurons as individual cells.

with the discovery of neurons. Santiago Ramón y Cajal was the first
to report the delicate anatomy of the nervous system (see Fig. 2)
and argued that neurons are information processing units that form
connections and propagate electrical impulses to accomplish their
various functions. Thus, laying the foundations of modern neuro-
science and the conceptual framework for connectomics [SL16].

The term connectome originally meant “a comprehensive struc-
tural description of the network of elements and connections form-
ing the human brain” [STK05], but has since been extended in
its definition to include any systematic account of connections,
from local circuits to networks constituting entire nervous sys-
tems [SL16]. The corresponding research field connectomics uses
computer-assisted and high-throughput techniques for image ac-
quisition and analysis for the structural mapping of neural circuits.
Current research is also studying how the brain’s functional archi-
tecture rises from the underlying structural circuit architecture.

2.1. Biological Background

The adult human brain consists of approximately 100 billion neu-
rons with each neuron having up to thousands of neural connec-
tions to other neurons. A recent dataset of one cubic millimeter of a
human cerebral cortex contained 50,000 neurons with 130 million
interconnections [SCJB∗21]. Neurons process and transmit infor-
mation as electrical impulses by forming synaptic connections with
other neurons. The size and form of neurons can vary widely, but
typically, neurons receive input on tree-like structures called den-
drites and transmit signals via their axon, a long tubular structure
that transmits signals away from the cell body (soma) towards other
neurons (see Fig. 3). Axons and dendrites are collectively called
neurites and make up the topological skeleton.

A synapse is the small gap between two neurons, where nerve
impulses are relayed. A typical mammalian synapse consists of a
presynaptic terminal (a bouton) on the side of the axon that releases
neurotransmitters when activated, a post-synaptic terminal at the
side of the dendrite, and the synaptic cleft between dendrite and
axon. The signaling process is partly electrical and partly chemi-
cal, where a nerve impulse (i.e., action potential) travels along the
axon and activates synaptic connections. A synapse can either be
excitatory or inhibitory, depending on whether a spike on the axon

Neuron:
Cell 
body AxonDendrites

Mitochondrion

Synapse Spine

Bouton Axon

Dendrite

Figure 3: Structure of neurons and their connecting synapses. Neu-
rons consist of a cell body, dendrites, and an axon. Most neurons
receive signals via dendrites (orange) and send out signals via the
axon (blue). Synapses transmit the signal between two neurons.
Neurons contain different cell organelles, such as mitochondria
that provide energy for cell metabolism.

increases or decreases the chance of provoking a spike in the receiv-
ing dendrite. Compared to the size of a neuron in the human body
(i.e., a fraction of a centimeter to a meter), a synapse is extremely
small (20-40 nm) [LD11]. Therefore, to capture synapses, tissue
needs to be imaged at a very high resolution, resulting in large
datasets. In addition to synapses, subcellular structures of neurons,
so-called cell organelles, are also of high interest to neuroscientists.
Mitochondria, for example, are responsible for providing energy to
the cell and its synapses. Interestingly, only half of the cells in the
mammalian brain are neurons. The rest are glia cells, which pro-
vide supporting features to neurons.

Neurons, their cell organelles, and synapses exhibit high struc-
tural variability. For example, synapses can vary by the position
of the post-synaptic terminal (i.e., either on a dendrite’s shaft or
a small extension called a dendritic spine) or by the number of
vesicles (cell organelles containing neurotransmitters) in the bou-
ton. However, it is an active area of research on what influences or
causes the variability of these attributes and how they impact the
function of a neuronal circuit. Therefore, in addition to connectiv-
ity analysis, scientists are interested in trends and correlations and
looking at individual neuronal structures, synapses, and attributes.

2.2. Connectomics Pipeline

High-resolution connectomics relies on many different processing
steps to go from the original tissue samples of neuronal data to the
reconstructed and analyzed wiring diagram. This process is gen-
erally called the Connectome pipeline [LPS14, Seu12a] and is de-
picted in Fig. 1. Throughout this process, at each step, interactive
and scalable visualization is key to helping scientists handle their
large and complex datasets. This survey follows the individual steps
of the connectomics pipeline and focuses on visualization methods
and challenges in each step.

Data Acquisition. Data acquisition starts with a 3D tissue sam-
ple that is chemically preserved to lock proteins and molecules that
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form neuronal structures. Next, the tissue sample is cut into very
thin slices using a microtome and, subsequently, each slice is im-
aged with a microscope. Light microscopes can acquire images of
a xy resolution of 200 nm. EM is necessary for higher resolutions
of up to 4 nm in the xy plane and around 30 nm in the z-dimension.
EM also densely captures details such as synapses.

Alignment & Registration. To image a large tissue slice, micro-
scopes typically acquire image tiles of a fixed size (e.g., 12,000 ×
12,000 pixels). In a post-processing step, these individual 2D image
tiles need to be aligned and stitched to combine them into a single
large 2D section. Registration, on the other hand, takes a stack of
2D sections as input and aligns them to reconstruct a 3D volume
representing the original 3D tissue block.

Segmentation & Proofreading. Reconstructing the wiring dia-
gram of all neurons in a tissue block requires labeling (i.e., seg-
mentation) of cell membranes and synapses. The gold standard for
segmentation is manual labeling, requiring expert users to mark in-
dividual pixels as belonging to certain structures. This approach,
however, quickly becomes infeasible for large volumes with mil-
lions of neurons. Therefore, more and more semi-automatic and
fully automatic segmentation methods have been developed re-
cently. While automatically generated segmentations are becoming
increasingly accurate, they still require proofreading by humans to
correct mistakes and verify the reconstructed connectivity graph.
Semi-automatic proofreading methods aim to streamline this pro-
cess by pointing users to likely segmentation errors in the dataset.

Exploration & Analysis. The final steps in the connectomics
pipeline consist of visual data exploration and analysis. Depend-
ing on the type of data available (e.g., light microscopy or EM,
segmented or unsegmented), different visualization methods exist
to explore the data in more detail. Visualization approaches range
from the visual exploration of the raw imaging volumes to the anal-
ysis of abstract connectivity graphs or query-based visual analysis
approaches that combine spatial data, connectivity data, and any
labeled or extracted metadata.

3. Data Acquisition

Advances in high-resolution imaging technologies enable the ac-
quisition of brain connectivity information across multiple tempo-
ral and spatial resolutions. Based on the scope of this survey, we
provide an account of the micro- and nano- scale modalities used
for brain data acquisition. For macroscale modalities that capture
neural fibers and their connectivity information at centimeter and
millimeter resolutions, we refer the reader to detailed surveys by
Pfister et al. [PKB∗12], and Chen et al. [CSC18].

3.1. Sample Preparation

Steps for sample preparation differ based on the imaging modal-
ity. Brain tissue samples are tagged using various labeling tech-
niques for optical imaging to capture the structural information of
individual neuronal cell types or their projective trajectory. Specif-
ically, neurons are labeled using single or multi-colored stains or
by breeding transgenic subjects to produce photophysical fluo-
rescent proteins that express different colors on the exposure of

Figure 4: Left to right: Wide field (WF) microscopy slice, EM slice,
and registered EM volume showing 2D image sections.

light [LLS08]. Additionally, to capture relationships between or-
ganization and function of neural circuits, specimens are injected
with viruses, such as Rabies [CL15], that spread selectively be-
tween synaptically connected neurons.

For imaging nanoscale structures using EM, tissue samples are
embedded in plastic to prevent its destruction during slicing. Next,
the sample is stained with heavy metals that interact with electrons
in ways that electron microscopes can detect. After staining, the
tissue sample is either first physically cut into thin slices using a
microtome and then imaged [HMS∗14], or the microscope images
and destroys thin sections of the sample progressively [TKH∗12].

3.2. Microscale Brain Imaging

Light microscopy has been used to map and study neuronal circuits
at a micrometer scale for a long time. Neuroscientist Cajal was able
to identify connectivity patterns of Golgi stained neuronal circuits
for the first time [Val70] using microscopic resolution sufficient to
image single neurons.

Wide Field Microscopy. The choice of the microscope is greatly
dependent on sample thickness and signal-to-noise tolerance.
Wide-field (WF) microscopy exposes a whole tissue sample to a
light source before capturing the image [BJA∗19]. With its large
field of view, WF can image a sample in a short time, albeit for
thin, sectioned slices (< 30µm). It collects light emitted from the
focal plane and illuminated layers above and below the focal plane.
As a result, the acquired images suffer from a degraded contrast be-
tween foreground and background due to out-of-focus light swamp-
ing and low signal-to-noise ratio (see Fig. 4, left). Image processing
techniques aim to resolve the blur and focus (see Section 3.4).

Confocal Laser Scanning Microscopy. In contrast to WF, a confo-
cal laser scanning microscope utilizes laser units as the light source
to excite the fluorescent stains of a sectioned sample (30-70 µm)
and acquires the resulting image following a pinhole design prin-
ciple [Pad00]. As such, the confocal system can block out any out-
of-focus light. Although this produces sharp images, some infor-
mation is lost due to the pinhole blocking out-of-focus photons that
may have originated from the focal plane.

Both confocal and fluorescence WF microscopy systems pro-
duce raw 3D data by sequentially changing the focal plane along
the z direction (that is, along with the depth of the sample) and stack
the generated 2D images atop each other. Typically, modern super-
resolution microscopy systems can achieve a lateral xy resolution
of around 200 nm and an axial resolution of around 600 nm [Wil].
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Advanced Methods. Sectioning a brain specimen into thinner sam-
ples increases the probability of the structures being severed at mul-
tiple points across consecutive slices. Advanced microscopy tech-
nologies, such as light-sheet and two-photon tomography, allow
imaging of thicker or whole-brain samples. Light-sheet microscopy
is a modification to wide-field fluorescence technology such that it
has intrinsic optical sectioning capabilities by automatically mov-
ing the sample through a single plane sheet of light [DLS∗07].

Serial two-photon tomography [RKV∗12] is an ex-vivo imag-
ing technique that combines serial imaging and sectioning. The
simultaneous absorption of molecules by two photons allows op-
tical sectioning without absorption above and below the plane of
focus. This eliminates the need for a pinhole. Though this method
offers increased depth penetration, the custom addition of a built-
in vibrating blade microtome creates undisturbed images within the
same space, as the sectioning occurs after the imaging. Finally, with
the advancement of “super-resolution” microscopy, optical exam-
inations of nanometer-scale phenomena using light microscopy is
now possible (e.g., [HW94, SEG15]).

While the mentioned modalities have resolutions that are not
sufficient to resolve synapses, expansion microscopy (ExM) phys-
ically expands brain tissues to overcome the resolution limita-
tion of light microscopy [CTB15, WZB19]. Additionally, imag-
ing neurons at a micrometer scale facilitates capturing functional
networks of neuronal systems [WTY∗15, RHC20], trace synaptic
circuits [LWK∗07], and analyze its geometry and functional con-
nectivity across disease and aging [BMA∗21]. Moreover, light mi-
croscopy has also been used recently for the connectivity analysis
of defined cell types by using spectral connectomics [SHW∗20].

3.3. Nanoscale Brain Imaging

EM is the only modality that can densely image biological tissues
at a nanometer scale (see Fig. 4). Short wavelengths of high-energy
electrons provide sufficient resolution for EM to capture the finest
details of synaptic connections and organelle structure.

The main challenge to imaging large brain volumes using EM in-
clude throughput time, alignment, and contrast. Early technologies
require a sample to be sectioned into ultrathin slices, which are then
aligned on a tape and imaged at a pixel resolution of 4×4 nanome-
ters [LPS14]. Transmission electron microscopy (TEM) [BLK∗11]
utilizes camera arrays that allow a fine lateral resolution, aiding in
the identification of fine structural details. Newer techniques, such
as serial-blockface scanning EM (SEM) [DH04] and focused ion-
beams (FIB-SEM) [KMWL08] are block-face methods that succes-
sively image and section each layer of the sample block. This al-
lows better alignment, thus saving computation time. Specifically,
FIB-SEMs are designed to section the sample automatically. Multi-
beam scanning electron microscopes (mSEM) [EMS∗15, HPJ∗20]
image larger fields of view, enabling the acquisition of big tissue
samples in a reasonable amount of time. For instance, Shapson-
Coe et al. [SCJB∗21] used an mSEM with 61 ion beams to image
10,000 µm2 simultaneously as a hexagonal shape. Overlapping im-
age tiles are then stitched together for larger fields of view.

Figure 5: Visualization of multi-beam SEM acquisition and align-
ment with MBeam viewer [HHM∗17]. a) 61 image tiles per multi-
beam field of view (MFOV). Each individual image is 3,128 ×
2,724 pixels in size, resulting in roughly 30k×26k pixels for each
MFOV. b) 55 MFOVs are stitched together into one 200k × 170k
pixel section. c) zoomed-in view to evaluate coarse alignment.

3.4. Visualization for Data Acquisition

Image quality assurance is essential in preparing a digital tissue
volume. MBeam viewer [HHM∗17] is a web-based visual tool to
assess imaging quality and contrast during data acquisition of EM
images. EM collects multiple tiles per imaging section that need
to be stitched together, and stitching greatly depends on the image
quality and a uniform contrast across the tiles. Typical quality prob-
lems are the inconsistent vertical position of the sample (primarily
in ATUM-SEM), unfocused images due to slice height variations,
and external particles on the imaging specimen. MBeam viewer al-
lows immediate and remote inspection of the image tiles by juxta-
posing them on a 2D canvas. On-the-fly mipmapping enables inter-
active zoom and pan and the rapid assessment of the image tiles’
quality (see Fig. 5). Modern EM [EZ18] software, such as for the
Zeiss SEM, integrates visualization for browsing and filtering the
image collection and can even create 3D scans of a sample.

Since EM imaging produces roughly a petabyte of image data
per cubic millimeter, data storage poses a significant cost factor and
a limitation for volume visualization algorithms. Therefore, it is de-
sirable to compress imaging volumes as much as possible without
losing details needed in the rest of the connectomics pipeline. Min-
nen et al. [MJB∗21] present a machine learning-based denoising
approach for EM images. Compressing the denoised images leads
to a 17-fold data size reduction with no loss in segmentation and
negligible loss in synapse prediction accuracy. They use a UNET
architecture with residual connections to learn a denoising model.

4. Alignment and Registration

Raw microscopy data needs to be processed to recover the 3D vol-
ume of the specimen. Challenges during data acquisition, such as
slicing and deformation, and a limited field-of-view only allow the
imaging of small image tiles. Mosaicing describes the alignment
and stitching of individual imaged tiles acquired in the lateral di-
rections (i.e., xy-plane). This is followed by the axial registration
(i.e., z-direction) of sections through the sample volume. Image
registration is well studied, using either intensity- or feature-based
techniques. In this section, we focus on methods specialized for
processing brain volumes imaged with optical and EM modalities.
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4.1. 2D Alignment and Stitching

High-resolution microscopes have lenses with a small field of view.
Thus, large biological tissues are imaged by laterally acquiring
smaller image tiles in the xy plane, with partial overlap. Align-
ment techniques aim to resolve these overlapping tiles and stitch
them to reconstruct a complete 2D image section. In the literature,
this step is also often referred to as mosaicing or montaging. Al-
gorithms for alignment and stitching address two important chal-
lenges. First, high-resolution microscopy generates a large amount
of data. A single 2D image slice imaged using light microscopy is
in the order of tens of gigabytes, while a slice imaged using EM is
hundreds of gigabytes. Therefore, alignment algorithms need to be
highly optimized or parallelized to recover the transformation pa-
rameters for all image tiles in a reasonable amount of time. Second,
the sample preparation and imaging workflow are fallible. Often
there are tears, folds, or other deformities in the mounted sample.
As a result, these algorithms need to consider missing information,
artifacts, and inconsistent lighting and contrast conditions.

Broadly, the following general steps are adopted to align and
stitch a grid of image tiles: (1) identify tile pairs and their overlap-
ping region, (2) estimate candidate displacement values between
adjacent tiles, (3) apply fine adjustment optimizations to reduce er-
rors in the stitched image, (4) stitch tiles to produce the mosaic, and
in some works, (5) post-process the component images together to
yield a seamless final result. The literature identifies two main ap-
proaches for aligning and stitching image tiles.

Feature-based approaches [CHP∗06,SCHT10] identify match-
ing features in adjacent tiles to compute image translations. This
approach can be sensitive to feature sparsity in the overlapping
regions of adjacent tiles. Thus, some methods make assumptions
about the data, e.g., for aligning blob-like structures [BAS∗96],
fine-filaments [AKCL∗03], or contours [BLLF06].

(Pixel) correlation techniques [Gre09,ERP∗09,TKG∗10,BI12,
CMB∗17] can be more general as they utilize domains such as im-
age frequency by applying Fourier transforms, or pixel intensity
by applying cross-correlation or mutual information. Similarly, this
approach assumes that images have enough pixels with unique fre-
quency or intensity components in the overlapping areas. As such,
the choice of method depends on the overall image content and the
characteristics of matching features.

Hybrid approaches [ERP∗09, TLB∗11] make use of both
feature-based and pixel correlation methods for a coarse-to-fine
alignment. Using this approach, Tsai et al. [TLB∗11] have im-
proved the accuracy, robustness, and scalability in aligning light
microscopy image tiles. They determine potential tile pairs by ex-
tracting features such as corners and edges from 2D maximum-
intensity projection (MIP) images [Low04] and find pair matches
using the Dual-Bootstrap Iterative-Closest Point algorithm (DB-
ICP) [YSST07]. An affine transformation between tile pairs is com-
puted to account for spatial distortion between pairs. Finally, to
stitch the tile pairs into a single volume, they employ pixel-based
normalized cross-correlation (NCC) minimization and a global
consistency approach [CSRT02].

Preparing brain samples often cause tears or folds, creating gaps
in the image continuity. As a result, an overlap between image pairs

can not always be guaranteed. To address this challenge, Yigitsoy
and Navab [YN13] have introduced an approach based on struc-
tural continuity beyond image boundaries. A tensor voting on the
orientation and saliency properties of the extracted structures is
used to infer artificial overlaps in the extended regions. The inferred
aligned structures are then used to estimate multi-scale transforma-
tions for the optimal alignment between the tiles.

Tools for 2D Alignment and Stitching are designed to mini-
mize the overall computational workload of large image volumes
while also keeping track of tile-pair alignment quality and allowing
manual intervention.

XuvTools [ERP∗09] is an automatic 3D stitching software that
adopts a coarse-to-fine strategy, combining both feature and pixel
correlation techniques. Assuming no information about the tile se-
quence, XuvTools uses a multi-scale phase-only correlation to esti-
mate a coarse position of the tiles. Using a GUI, users manually po-
sition the tiles in a grid layout. For fine-scale alignment, it detects
salient points that would appear in the overlap region and max-
imizes NCC coefficients of multiple smaller patches around the
salient points. Once tiles pairs are determined, absolute tile posi-
tions are computed by globally minimizing the displacement val-
ues. Finally, artifacts due to changing intensities at the border of
the tiles are alleviated by applying bleaching correction to each tile
pair. While this process is fully automated, XuvTools displays the
progress of alignment and stitching at every iteration. If a stitching
error is identified, users can adjust parameters for the correlation
threshold and the size and search radius of correlation windows to
recompute the fine alignment step.

TeraStitcher [BI12] is designed to stitch tera-sized tiled mi-
croscopy images on consumer hardware. To efficiently estimate
the relative displacement of tile pairs, adjacent tile pairs are di-
vided into user-defined substacks, and 2D maximum intensity pro-
jections of the tiles along the three dimensions are used to com-
pute the NCC coefficients. For the optimal global placement of tile
pairs, a minimum spanning tree approach by Yu and Peng [YP11]
is employed. Finally, overlapping regions are blended using two
phase-shifted sinusoidal functions for a complete mosaic. To fur-
ther improve processing and stitching time, Bria et al. [BBGI19]
use a CUDA multi-process parallelization strategy. TeraStitcher al-
lows manual intervention to refine stitching metadata by providing
(1) a preview feature to stitch user-selected portions of data and
(2) graphical metadata models for a more comprehensive analysis.
Users can detect and locate abnormalities by inspecting the stack
borders using the preview.

Although some microscopes typically provide approximate tile
locations, in practical settings translation stages can still exhibit
inaccuracies. To this end, Hörl et al. [HRRP∗19] have devel-
oped BigStitcher, designed specifically for gigapixel light-sheet
microscopy datasets that solves for tile pairs in non-regular grids
containing empty images and multiple independent samples. Using
downsampled image tiles, all possible shifts for overlapping pairs
are first calculated using phase correlation, called links. In the op-
timization step, an additional attribute of strong (confirmed) and
weak (estimated) links is introduced to solve for the global opti-
mal tile placement. By optimizing both link types, strongly linked
regions are accurately aligned, while an optimal alignment is de-
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termined for weakly linked groups of tiles. The entire process is
interactively displayed, enabling users to verify, interact and poten-
tially guide the proper alignment of complicated datasets.

In studying the alignment workflow of pairwise displacement
followed by global placement, Chalfoun et al. [CMB∗17] found
that residual errors can be introduced when the raw data has sparse
features or information for feature-based and intensity correlation
methods, respectively. To address this, they have introduced Mi-
croscopy Image Stitching Tool (MIST), a grid stitching technique
that minimizes stitching errors by estimating the microscope me-
chanical stage model parameters and using them to improve the
search space of the global tile placement optimization step. MIST
uses a multicore hybrid CPU/GPU implementation to handle ter-
abytes of microscopy data.

Simply warping one tile onto another using the displacement
transformation can introduce artificial deformations in the final
stitched output. To this end, Saalfeld et al. [SFCT12] have intro-
duced a technique for EM images that aligns corresponding key
points and formulates an elasticity constraint on local neighbor-
hoods to solve for a nonrigid deformation. The elasticity constraint
is implemented by representing image tiles as a triangular mesh of
a spring-connected particle system. Each vertex of the spring mesh
searches for corresponding key-point locations in the adjacent tile
using pairwise block-matching, and the springs tend to maintain a
rigid transformation across the overlapping tiles, penalizing distor-
tions. Such a constraint allows the alignment of arbitrarily large
image tiles without propagating transformation errors. Haehn et
al. [HHM∗17] have developed a visualization tool for this process,
called RHAligner, which provides an abstracted visualization of
stitched sections and allows for quick assessment of the alignment
process. RHAligner expands the algorithm to solve for a hexagonal
grid and optimizes it by adopting a parallel implementation.

4.2. 3D Registration

Brain specimens have to be physically sectioned into a series of
slices for most imaging modalities. Thus, to extract 3D structural
and functional information, the serial sections need to be registered
along the z-direction (or imaging direction). However, the process
of physical sectioning severs structures at the slicing interface, de-
stroying continuity between consecutive sections and resulting in
tissue deformation. In contrast, modalities that adopt a block face
approach do not suffer from this information loss [HXL∗15].

Some rudimentary approaches to simplify registration in-
clude introducing intrinsic or imposed fiducial markers in the
sample [HML∗95, BMV05, PYD04], defining anatomical land-
marks [SPB∗15], or attaching additional imaging modalities [J∗09]
to be used as a priori information.

Beyond an a priori approach, 3D registration techniques are de-
signed to recover a volume that results in the natural progression of
features through successive sections [JWC∗06]. Within the scope
of optical microscopy, Lee and Bajcsy [LB08] have proposed regis-
tering sections by tracking the trajectory of salient cylindrical struc-
tures in each section and across adjacent slices.

Tools for 3D Registration. Peng et al. [PCL∗11] have devel-
oped BrainAligner for registering light microscopy image slices

that first perform robust global affine registration by transforming
them into a common coordinate system using a predefined brain
atlas [BIP15], followed by nonlinear local alignments using pre-
defined landmarks. For local alignment, predefined landmarks are
used to generate a thin-plate-spline warping field [Boo89]. Further-
more, BrainAligner allows adding custom landmarks to help opti-
mize or improve critical alignments.

Some studies [HPJ∗11, DWG∗09, LFP11] have suggested using
traced neurons for registration. Essentially, the process of neuron
tracing (see Sec. 5.2) generates a concise and less noisy representa-
tion of neuron morphology compared to using the raw microscopy
volume for registration. The Filament Editor [DHO14] and Neu-
ronStitcher [CIdC∗17] are two widely used interactive registration
and alignment tools that assemble adjacent microscopy sections us-
ing traced neurons and allow fine-tuning by providing a visualiza-
tion of complicated neuron fragments.

NeuroConstruct [GBM∗21] adopts a hybrid approach of us-
ing intensity correlation (for coarse registration) and feature-based
alignment (for fine tuning) to register segmented light microscopy
brain volumes. Following global registration, similar to Yigitsoy
and Navab [YN13], a tensor-based method is used to propagate
and register exiting/entering neurites across adjacent sections. Fi-
nally, the reconstructed volume can be interactively fine-tuned by
clicking on corresponding entering/exiting neurites.

In the EM domain, Fialia [Fia05] has developed Reconstruct, to
perform both manual and automatic registration on serial section
EM slices. For manual registration, users can progressively define
and adjust transformation parameters (translation and rotation). Re-
sults are visualized by blending or flickering adjacent sections. For
automatic registration, Reconstruct treats neuron traces in sections
as fiducial markers and computes the transformation that minimizes
the distance between the centroids of the traces in section pairs.
Users can view the registration result and make manual edits to fix
misalignments or distortions. Adjustments made to one section pair
are then propagated to the rest of the series.

TrakEM2, developed by Cardona et al. [CSS∗12], is a widely
used open-source software for neural circuit reconstruction from
terascale EM serial sections. For its automated registration pipeline,
sections are registered by first extracting SIFT features [Low99]
to estimate a linear transformation, followed by elastic align-
ment [SFCT12] to compensate for non-linear distortion. Alter-
natively, for manual registration, feature correspondences are as-
signed using a GUI interface. Local alignment and transformation
errors are interactively fixed using point-click-and-drag manipula-
tion aided by transparent overlays of section pairs. Brain volumes
are viewed either as low-resolution images of large fields of view
or as high-resolution images for user-defined areas of interest.

In addition to mosaicing, the elastic registration tech-
nique [SFCT12] discussed in Sec. 4.1 can also be used for reg-
istering adjacent section series. The block matching algorithm ex-
plores transformation parameters in all sections of a local neighbor-
hood of each vertex of the defined spring mesh. Using this, Haehn
et al. [HHM∗17] have developed a plugin named RHAligner for
their Butterfly middleware that registers EM sections and provides
a visualization to monitor, debug, assess, and fine-tune the results.
Since identifying features incorrectly can result in the failure of all
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Figure 6: EM slice (left) and dense segmentation overlay (right).

successive steps, the extracted SIFT features are shown to the user
for debugging by overlaying them on top of the original image.
Once registered, users can visualize and identify incorrect regis-
trations by scrolling through a 2D representation of the stack. In
case of a failed registration, the tool visualizes the displacement of
blocks using color-coded arrows representing vector fields based
on the direction of each displacement according to its angle. Due
to the uniqueness of each dataset, debugging the misalignments is
designed to be a manual process.

Lindow et al. [LBD∗21] have developed a software-assisted al-
gorithm for the alignment and matching of filamentous structures
in serial-section EM tomography. It provides visualization and in-
teraction tools for each registration and reconstruction process to
guarantee a real-time response. More recently, deep learning tech-
niques are being investigated due to their advantage of improving
performance and improved accuracy and robustness to learn fea-
tures in the sample for registration [YHT∗17, Jai17].

5. Segmentation

Once a 3D volume is recovered from the raw microscopy data, in-
dividual neuronal structures need to be segmented to enable the de-
tailed study and visualization of separate structures and their con-
nectivity. A dense segmentation of an EM slice is shown in Fig-
ure 6. A full survey of the state of the art in semantic and instance
segmentation of biomedical images is out of scope for this paper.
Therefore, we point the reader to recent surveys on deep learning
for image analysis and segmentation [MBK∗19, LRL∗21] and fo-
cus on approaches targeting connectomics and neuroscience.

5.1. Automatic Segmentation Approaches

While the ultimate goal for segmentation in the connectomics
pipeline is to extract relevant structural and connectivity infor-
mation from large microscopy volumes, the techniques employed
vary based on the imaging scale, image resolution, and modal-
ity. Microscale segmentation approaches capture larger structural
shapes in microscopy images, such as cell bodies and neurites. On
the other hand, nanoscale segmentation approaches work on high-
detail image cross-sections that include individual cell organelles
and synapses. Both approaches, however, have to overcome data
challenges, such as low signal-to-noise ratio, imaging artifacts,
foreground blurring, or slice mis-alignment [SCJB∗21].

Microscale Segmentation. At the microscale, segmentation fo-
cuses on tracing the path of a neuronal structure along its center-
line and determining its starting point (typically cell bodies) and

termination. Current techniques aim to identify intensity distribu-
tion features and determine the tracing direction for branching neu-
ronal morphologies. Methods to address these goals include op-
timal seed-points path finding [PLM11, LBA11, QZL∗16], model
fitting [WNTR11, LQX∗19], fast marching [BR14, YHL∗19],
distance-tree hierarchical pruning [XP13], and deep learning-based
automatic approaches [CIdC∗17, LZPJ17, ZKPL18, FPA∗20].

Nanoscale Segmentation. Automatic segmentation methods for
EM data mainly perform dense segmentation (i.e., every pixel in
an image is assigned a label) based on deep learning. Recently
published large EM connectomics datasets [SCJB∗21,XJL∗20] use
flood filling networks (FFN) [JKL∗18] for segmentation. FFNs add
recurrent pathways to convolutional neural networks (CNN), which
helps maintain the neuron shape prediction over multiple steps of
the segmentation process. FFN based architectures [JKL∗18] out-
perform other state-of-the-art methods [ZWJ17,LZL∗17,FTG∗17]
by producing fewer merge and split errors. Since hyper-parameter
configuration, network architecture, and other attributes of the
learning pipeline largely depend on the data size and available
hardware, efforts toward a self-configuring pipeline have been
made [IJK∗21]. More recently, Lin et al. [LWLP21] have devel-
oped an open-source deep-learning framework for the semantic
and instance segmentation of volumetric microscopy images built
on PyTorch. 3D segmentation also comes with the challenge of
tracking 2D slice segmentations through the imaging stack. Cross-
classification clustering (3C) [MMS∗19] solves this task specif-
ically for EM connectomics, where multiple complicated, inter-
twined neurons need to be tracked. All these approaches require
labeled microscopy imaging data. Lauenburg et al. [LLZ∗22] re-
cently presented a method for 3D instance segmentation of un-
labeled images from the expansion microscopy domain by lever-
aging labeled images from the EM domain via a cyclic segmen-
tation GAN (CySGAN). Other segmentation approaches include
local shape descriptors (LSDs) [SND∗21], dense voxel embed-
dings [LLLS21], or FusionNet [QHJ21]. To scale segmentation up
to petascale imaging volumes, Chunkflow [WSLS21] allows dis-
tributing computational tasks over the cloud and local resources.

5.2. Interactive Segmentation Approaches

Currently, deep learning is the state-of-the-art method for image
segmentation. However, complex programming setups, imperfect
segmentation results, and limited access to data and computing re-
sources often make it difficult for neuroscientists, primarily non-
programmers, to take advantage of the recent advances. Therefore,
manual and semi-automatic approaches remain valuable to neuro-
scientists in practice, as well as interactive methods for fine-tuning
of deep learning models.

Model Fine-Tuning for ML-based Segmentation. Haberl et
al. [HCT∗18] propose a plug-and-play cloud-based image seg-
mentation framework for biomedical images of different imaging
modalities. They build on the DeepEM3D model [ZWJ17], which
was specifically designed for the segmentation of anisotropic EM
imaging volumes. Users can access their service through a website,
where they can retrain existing models with their training data or
run DeepEM3D [ZWJ17] on a set of provided data set. The Uni-
EM tool [UBK∗19] helps to make automatic deep learning segmen-
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tation algorithms more accessible through a visual interface, mak-
ing it usable for non-programmers. Users can generate ground truth
data with a paint tool in Uni-EM and use it for network training.
They also integrated Dojo [HKBR∗14] for proofreading segmenta-
tion results (see Sec. 6.2). However, due to the design as a desktop
application, users are limited by local hardware and can not access
cloud-computing resources. Ghahremani et al. [GBM∗21] propose
a workflow that helps users interactively annotate a small set of
neuronal structures by drawing over 2D cross-sectional views. A
preliminary model is trained using a small annotation set. Conse-
quently, instead of manually generating a sufficiently large dataset
of annotations, the preliminary model is used to create draft anno-
tations, which they can fine-tune. The training of the preliminary
model can also be iterative to reduce the fine-tuning effort.

Semi-automatic Segmentation. Ilastik [SSKH11, BKK∗19] is a
tool for the semi-automatic segmentation of microscopy image vol-
umes. It uses a random forest classifier to infer a segmentation
from label inputs provided by the user. The features are learned
from 3D neighborhoods of pixels. Users can refine segmentation
outputs interactively and are guided by a segmentation uncertainty
map pointing them to ambiguous segmentation regions. Roberts et
al. [RJVR∗11] propose another semi-automatic segmentation tech-
nique that uses sparse scribbles to generate accurate segmentation
in EM image volumes. First, the user scribbles into a neuron’s
cross-section in each volume slice. 2D segmentations for each slice
are then predicted by minimizing a variational segmentation energy
function. These 2D segmentations are the fixpoints for generating
a 3D volumetric segmentation shape. NeuroTrace [WBH∗10] sug-
gest segmentation masks using multiphase level sets [VRMP09]
and integrates a scalable volume viewer. TrakEM [CSS∗12] also
offers semi-automatic reconstruction, synapse labeling, and skele-
ton extraction. VAST [BSL18] is also a widely used program for
manual and semi-automatic labeling and segmentation of large mi-
croscopy image volumes. Users can annotate the volume at differ-
ent resolution levels to speed up segmentation. By outlining closed
contours of cells, VAST automatically fills the selected region.

Manual Segmentation. Neurolucida [GG90] is an early tool
developed primarily as a manual computer-assisted tracing sys-
tem for light microscopy systems. The specialty of this soft-
ware is its integration with the microscopy system to superim-
pose both image data and system control functions for manual
tracing. Given that Neurolucida is not freely available, alterna-
tive manual segmentation tools [PHK04, PLM11, MCVA17] are
available. 3D Slicer [PHK04] is a widely adopted user interface
integrating ITK segmentation functionalities. Catmaid [SCHT09]
and VikingViewer [AMG∗11] are multi-user collaborative environ-
ments for manual segmentation of large datasets. Catmaid addition-
ally allows synchronized inspection of multiple registered datasets,
such as comparing EM and light microscopy volumes. Scalabil-
ity in these systems is achieved through a tiled image pyramid,
enabling the browser only to load relevant data pieces into work-
ing memory. Many of the manual and semi-automatic segmenta-
tion tools also support proofreading, such as VAST [BSL18], Cat-
maid [SCHT09], and the Viking Viewer [AMG∗11]. We outline
their proofreading capabilities in Section 6.

Immersive Neuron Tracing. Studying the complex circuits of neu-

rons on a 2D computer screen requires projecting their 3D shape
into 2D. Spatial understanding can only be done by interacting with
the data. Virtual reality (VR) provides an immersive viewing and
navigation interface for 3D data, enabling more intuitive interac-
tions with complex spatial structures.

Boges et al. [BCM∗19, BAS∗20] leverage this advantage by
proposing a new approach to creating, proofreading, and explor-
ing skeletons of neuronal structures in VR. Representing neurons
using skeletons is often more efficient than storing surface meshes
due to reduced data sizes while preserving important topological
information. Their environment is designed to generate skeletons
of neuronal structures represented by surface meshes, quick cor-
rection of errors (e.g., branching errors), and efficient quantitative
analysis by measuring distances and topological features. They im-
merse the user in an endoscopic view inside the neuron. A path
stabilizing feature automatically places skeleton nodes and edges
while navigating through the neuron. Their evaluation reported that
the path stabilizer could reduce the number of interactions needed
to generate a full skeleton compared to manual skeleton placement.

Usher et al. [UKF∗18] present a design study leveraging VR
to trace neurons more effectively. Instead of tracing neurons slice
by slice in the imaging volume, their tool visualizes segmentation
suggestions in 3D. It allows for correcting segmentation merge
and split errors using intuitive 3D navigation. Their method ap-
plies state-of-the-art data management and large-scale visualiza-
tion techniques to support data sizes exceeding RAM capacity en-
abling the use of consumer-level VR hardware. Users reported that
fine-tuning segmentations is still challenging in VR. Additionally,
the authors observed that tracing errors occurred because users for-
got to navigate back to branching points of neurons. McDonald et
al. [MUM∗21] extend this strategy by adding topological features
for user guidance. Their semi-automatic technique computes mul-
tiple potential paths that follow a neuron using the Morse-Smale
complex (MSC) [GBHP08]. Based on this set of paths, users select
a subset that contains the actual path of the neuron. This approach
makes neuron tracing more automatic while preserving the advan-
tages of 3D navigation in VR.

5.3. Connectivity Extraction

EM-based imaging remains the gold standard for connectivity
analysis. In principle, EM allows the identification of individual
synapses, making connectivity analysis more accurate and more
data-intensive. However, detecting synapses in EM data is still a
significant challenge that needs to be tackled to generate reliable
connectivity information. Light microscopy often cannot resolve
individual synapses due to limitations in imaging resolution, giv-
ing rise to methods that estimate the connectivity between neurons
based on statistical rules.

Synapse Annotation. Several segmentation and proofreading tools
support the annotation of synapses, where users have to manually
or semi-automatically set the location of a synapse and mark their
connecting structures [SCHT09, BSL18, ZOYP18]. Additionally,
several automatic synapse detection methods have been proposed
recently. Huang et al. [HSP18] use a UNET CNN to detect presy-
naptic structures and a multilayer perceptron (MLP) to find post-
synaptic structures. Parag et al. [PBK∗18] detect synapse location
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and the direction of connectivity simultaneously. A 3D U-net is
used for synapse detection and a 3D CNN for result pruning. Lin
et al. [LWJ∗20] employ an active learning approach to suggest the
most informative synapse instances in the unlabeled data given an
annotation budget. Other recent automatic synapse detection ap-
proaches were proposed by Berning et al. [BBH15], Dorkenwald
et al. [DSK∗17], and Buhmann et al. [BSMM∗21].

All previously presented methods studying brain connectivity
rely on many intermediate steps to generate connectivity data. Ron-
cal et al. [GRKV∗15] present the first end-to-end pipeline that
takes a microscopy image volume as input and outputs a graph
of connectivity information. They combine a set of state-of-the-
art algorithms for graph extraction. Their pipeline starts by de-
tecting the membranes of neuronal structures [CGGS12]. Next,
they create a three dimensional neuron segmentation using Ro-
hana [KVRKB∗15], Gala [NIKP∗13], or a simple watershed-based
algorithm [BM00]. This set of segmentation algorithms computes
the nodes (neurons) of the connectivity graph. To find the link
between the nodes (synapses), they use a Random Forrest classi-
fier [RPKF∗14] to detect synapses in the data set. To optimize their
results, they performed a hyperparameter grid search for all used
algorithms. They evaluated 1,856 graphs and published the param-
eter configuration for the best graph obtained when they tested their
pipeline on the Kasthuri dataset [KHB∗15] (see Table 8.2 for a list
of open-source datasets). All parts of the presented pipeline intro-
duce errors that propagate throughout the process. Especially, small
spine segmentation errors can lead to larger inaccuracies in the con-
nectivity graphs. To quantify these errors, Roncal et al. [GRKV∗15]
present two graph quality assessment measures based on the dual
graph, called the line graph. Synapses are represented as nodes
in the line graph, and neurons indicate edges. First, the Frobenius
norm [GVL96] is used to measure the error between the line graph
of the ground truth and the line graph of the estimated graph. This
measure, however, is unbound and increases with the graph size,
which can result in misleading interpretations. The second quality
metric leverages the F1 score between the edges of the estimated
line graph and the edges of the ground truth line graph. Using this
method, true positive edges are represented in the estimated and
ground-truth graphs. False positives are only shown in the esti-
mated graph, and false negatives are missing in the estimated graph.

Approximate Connectivity Prediction. In some cases, the resolu-
tion of imaging techniques is too low to resolve individual synapses
between neurons, such as in light microscopy. In that case, it is
harder to make reliable statements about neuron connectivity. Sci-
entists use Peters’ rule [RMA17] to predict connections. This rule
states that proximity between neurons increases their chance of
forming synapses. Swoboda et al. [SMB∗14, SMB∗17] build on
this assumption by proposing a tool that studies connectivity by
visually analyzing neuron arborization overlaps. Since displaying
all branches of the overlap directly in 3D would lead to a cluttered
visualization, they only render glyphs (i.e., small dots color-coding
the amount of overlap). Hovering over the glyphs reveals more in-
formation about the particular overlap. Arborization overlaps be-
tween neurons are computed upon startup of the application within
a few seconds. Other research has found that Peters’ rule is not ac-
curate and, therefore, proximity between neurons is not enough to
predict synaptic connectivity [KHB∗15].

Motif Discovery. One way to extract information from large
connectivity graphs is to search for common motifs in
them [UHM∗21]. A graph motif is a recurrent and statistically sig-
nificant subgraph or pattern of a larger graph and, applied to brain
circuits, could give insights into the biological principles of the
brain. Optimally, motif discovery techniques should be performed
on dense brain tissue reconstructions to ensure that all connections
between cells are considered.

Motif discovery algorithms can be categorized in network-
centric and motif-centric approaches [RPS∗19]. Network-centric
approaches use subgraph enumeration techniques such as the
Kavosh algorithm [KAE∗09] to list all subgraphs of a certain size
in a graph. This approach is computationally expensive but allows
identifying common subgraphs without having a prior hypothe-
sis. On the other hand, motif-centric approaches such as DotMo-
tif [MRJ∗21] require the user to sketch a specific motif first. Then
the algorithm searches the graph for instances of that motif. We re-
fer the reader to detailed surveys on graph theory, motif discovery,
and subgraph enumeration techniques [RPS∗19, YFZ∗20].

Song et al. [SSR∗05] were among the first to study small mo-
tifs in the visual cortex of a rat. Specifically, their network-centric
approach investigates how random graphs differ from biological
circuits. They apply a statistical motif detection algorithm where
a motif is found if its count is higher than the expected count in
a random graph. They identify small motifs such as many bidirec-
tional connections in two-neuron circuits. Furthermore, they found
an overrepresentation of triangular patterns in three-neuron circuits.

Neuroscientists believe that some psychiatric diseases originate
in specific brain wiring patterns [LLS08, BB09]. Vogelstein et
al. [VRVP13] propose a method that can help identify these mal-
functioning connections and study them in more detail. They study
graph classification theoretically and apply their findings to con-
nectomics. Given a set of graphs and their labels, they want to pre-
dict a classification for a new unlabeled label graph. By finding so-
called signal-subgraphs, their method can identify the differences
between two graphs by highlighting unique edges. This method en-
ables the comparison of invertebrate brain graphs of different indi-
viduals of the same species, such as the C. elegans.

Ideally, motif discovery is performed on large subsets of the
brain. In that way, motifs spanning different areas of the brain
can be identified, and neurons do not get truncated. Scheffer et
al. [SXJ∗20] present a study of a large portion of the brain of a
fruit fly. They study both big and small motifs. They found over-
represented reciprocal connections in small motifs and cliques (i.e.,
graph structures where every node is connected to every other node)
as the most common large motifs.

6. Proofreading

Reconstructing a connectome from high-resolution EM images of
brain tissue requires extensive human effort to proofread automati-
cally generated segmentation and synapses. Current automatic seg-
mentation algorithms can handle large and complex datasets that
would be infeasible to segment manually with relatively high accu-
racy. However, these automated methods are still less accurate than
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manual expert segmentations. Therefore, during proofreading, sci-
entists identify and correct errors in the automatic reconstruction
of their data, a requirement for subsequently extracting the wiring
diagram. Even a few incorrect labels or missing synapses could
otherwise change the connectivity diagram significantly.

The proofreading workflow can roughly be categorized into three
steps [HKBR∗14]: First, searching and identifying structures that
contain segmentation errors or missing segmentation; second, mod-
ifying and correcting the existing segmentation; and third, confirm-
ing and verifying the correctness of the modified segmentation.

The most common errors in automatic segmentation data in con-
nectomics are merge errors, split errors, and missing synapse la-
bels. Merge errors occur when two separate structures are incor-
rectly connected and merged into a single segment (i.e., under-
segmentation). Split errors occur when a single structure is incor-
rectly split into two separate segments (i.e., over-segmentation).
Split errors are typically faster to correct than merge errors, as only
the look-up table from segment labels to actual biological struc-
tures needs to be updated so that two segment labels correspond
to a single biological structure. Therefore, many automatic seg-
mentation algorithms are tuned to slightly over-segment the data
(rather than under-segment) to speed up subsequent proofreading.
In addition to split- and merge errors, the third type of errors are
missing or incorrect synapse annotations. This error occurs when
synapses are either not detected at all or marked at an incorrect po-
sition. Synapse annotations are typically not part of the segmented
data but stored as tabular metadata, including the synapse’s spatial
position, the two structures it connects, and optional data such as
inferred synapse strength.

Some proofreading approaches only support the correction of
merge and split errors, while other tools focus more on correct-
ing the connectivity based on synapse annotations. In the fol-
lowing, we outline current proofreading approaches, starting with
purely manual methods (Sec. 6.1), before outlining semi-automatic
(Sec. 6.2) and automatic proofreading approaches (Sec. 6.3), as
well as crowdsourced proofreading (Sec. 6.4).

6.1. Manual Proofreading

Manual proofreading tools allow users to change incorrect seg-
mentations. However, they do not offer any automatic support or
guidance. This means that all manual segmentation tools discussed
in Section 5.2 that allow the user to draw on individual image
slices to segment structures in the image can also be used for
proofreading (e.g., Catmaid [SCHT09], Viking Viewer [AMG∗11],
WebKnossos [BBB∗17], and VAST [BSL18]). In the following, we
focus explicitly on their proofreading capabilities. A downside of
purely manual approaches is that they neither support the user in
finding errors nor do they provide methods to fix erroneous seg-
mentation with minimal user input semi-automatically.

VAST [BSL18] is a widely used segmentation and proofreading
tool for EM data that does pixel-per-pixel segmentations. It allows
users to draw segmentation masks on top of the displayed slice im-
age and, more recently, even offers support for fixing split- and
merge errors. VAST is a single-user tool that focuses on voxel-based
segmentation masks and manual painting.

Figure 7: The skeleton tracing interface of Catmaid [SCHT09] in-
cludes a slice view for adding skeleton elements, a 3D viewer, and
an abstract connectivity view.

Instead of working on voxel-based dense segmentations, where
every voxel is assigned to a label, several tools focus on
quickly reconstructing and proofreading connectivity data. Cat-
maid [SCHT09] is an open-source web-based tool for terabyte-
scale image data browsing that also supports collaborative micro-
circuit reconstruction and annotation. Catmaid’s approach focuses
on letting users trace skeletons of neurons instead of doing a full
pixel-per-pixel segmentation (see Fig. 7). It supports synapse anno-
tation to reconstruct neuronal connectivity and offers several graph
views. The Viking Viewer [AMG∗11] is similarly a collaborative
annotation environment for extracting skeletons in terabyte-sized
datasets. It supports multi-channel data and creates graphs to dis-
play neuronal circuits.

Boges et al. [BCM∗19,BAS∗20] focus on skeleton-based proof-
reading in immersive and virtual environments. Users can cre-
ate or proofread skeletons that were automatically generated by
the Mean Curvature Flow (MCS) [TAOZ12] and Centerline Tree
(CLT) [SBB∗00] algorithm. Proofreading tasks include identifying
the main skeleton branch, removing duplicate nodes in highly de-
tailed skeletons, and deleting branching artifacts in the soma area.

6.2. Semi-automatic Proofreading

Semi-automatic proofreading aims to minimize required user input
and to speed up and simplify the proofreading process. Most meth-
ods focus on the second part of the proofreading workflow, where
users correct and adjust merge and split errors (after the errors have
been identified).

Mojo [KBRK∗13] is one of the earlier proofreading tools for
large EM datasets that supports the fast correction of split and
merge errors. Mojo was superseded by Dojo [HKBR∗14], which
also supports the fast correction of split and merge errors but also
offers a web-based multi-user interface to scale up the proofreading
process. Dojo focuses on simplifying the required user interactions.
Split errors can be corrected by simply clicking on the segments
that should be merged in the slice view. To correct merge errors,
users have to draw the boundary line between the two structures,
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Figure 8: NeuTu [ZOYP18] supports the correction of split and
merge errors in 2D, while showing an overview of the edits in 3D.

and Dojo automatically splits the segmentation into two separate
segments by computing a watershed algorithm.

Several tools have been introduced that combine scalable visu-
alization, segmentation, and proofreading. WebKnossos [BBB∗17]
is a web-based framework for visualizing, segmenting, and proof-
reading large 3D volumes. The tool includes manual brushing
and painting and a merger-mode to correct over-segmentation.
It supports voxel-based segmentation as well as skeletons and
includes task- and project management features akin to Neu-
roblocks [AABH∗16] (see Sec. 6.5). WebKnossos also offers
paid services for annotation, segmentation, and dataset alignment.
NeuTu [ZOYP18] is an open-source multi-user tool for neuron re-
construction, proofreading, and visualization. NeuTu supports the
correction of split and merge errors and the annotation of synapses
(see Fig. 8). They use a distributed, versioned, image-oriented data
service (DVID) [KP19] for fast data access and simultaneous proof-
reading of multiple users on the same dataset.

6.3. Guided & Automatic Proofreading

In addition to semi-automatic proofreading methods, some guided
and automatic methods have recently been proposed. Guided meth-
ods identify where segmentation errors are most likely, and help the
user find and identify errors quickly. Automatic methods then com-
pute corrections for the identified errors.

Sicat et al. [SHM13] use auto-corrections combined with manual
proofreading. The method takes a graph-based approach to com-
pute the midpoints of each segment in each slice and visualize how
the midpoint locations propagate through the volume. Spatial out-
liers are marked as errors and corrected via automatic interpola-
tion and manual proofreading. This simple approach works well
for some merge errors but does not account for split errors. For split
errors, focused proofreading [Pla16] uses a region adjacency graph
across slices to compute affinity scores, leading to a list of potential
split errors that can be presented to the proofreader. It builds upon
NeuroProof [Far20] as its agglomerator and is open source.

Haehn et al. [HKT∗18] identify split and merge errors by us-
ing a classifier based on a traditional CNN architecture. However,
they additionally use a suggestion system to speed up and simplify
proofreading. The system loops over potential merge and split error
regions that were detected by the classifier. Every error is presented

to the user as a simple binary decision to accept or reject a correc-
tion. In a user study, this guided proofreading approach performed
better than focused proofreading [Pla16] and semi-automatic proof-
reading in Dojo [HKBR∗14].

As opposed to the above approaches that focus on automatic
proofreading of voxel-based segmentation, the recently proposed
VICE system [GWB∗21] aims to correct connectivity-related er-
rors. VICE helps users recover connectivity pathways by focusing
on proofreading local circuits of individual cells. The method uses
heuristics derived from actual proofreading scenarios to compute
likely connectivity errors by considering predicted synapse loca-
tions and presenting the detected error locations to the user in a
scalable 3D view. The user can then manually correct these errors.

RLCorrector [NJJ21] takes a completely automated approach to
proofreading based on reinforcement learning. The tool can effi-
ciently manage a combination of merge and split errors concur-
rently by modeling the human decision process in proofreading us-
ing a reinforcement agent and combining multiple reinforcement
learning agents in a hierarchical manner. Quantitative results indi-
cate that RLCorrector is better at correcting split errors than the
guided proofreading approach by Haehn et al. [NJJ21], but that
Haehn et al. is better at correcting merge errors.

Summarizing, fully automatic proofreading approaches rely
on effective automatic error detection and subsequent correc-
tion. Several automatic error detection methods have been pub-
lished in recent years, however, many of them still need to
be integrated into larger proofreading frameworks. Current er-
ror detection methods rely either on predictions from image
data [HKT∗18, ZTLS17, RMP∗17], skeletonization and graph-
based methods [SHM13,Pla16,DPM∗18], or biological constraints
and heuristics [GWB∗21, MHZ∗19].

6.4. Crowdsourced Proofreading

Even with semi-automatic and guided methods, proofreading re-
quires extensive human effort for today’s large and high-resolution
EM datasets. Crowd-sourced approaches aim to mobilize gamers
and citizen scientists worldwide to proofread large datasets. Eye-
wire [Seu12b] was the first crowd-sourced gamified proofreading
system. Users are tasked with creating 3D reconstructions of neu-
rons by improving an initial segmentation generated by a deep con-
volutional network. Users trace each neuron and rack up points
based on speed, skill, and accuracy. A leader board compares ac-
tivities between users and encourages them to compete with other
community members. The platform also provides an interactive
tutorial to make the onboarding of new users easier. It attracted
over 200,000 gamers and led to follow-up studies that investigated
player motivation for participating in a community-based science
project [TLRSH17].

FlyWire [DMM∗22] is a similar crowd-sourced platform that
aims to create an open community dedicated to proofreading the
neural circuits in a Drosophila melanogaster (i.e., fruit fly) brain
(see Fig. 9). However, compared to Eyewire, which targets non-
experts and the general public, FlyWire is geared towards a slightly
more experienced and knowledgeable audience. Both Eyewire and
FlyWire provide extensive training material for onboarding new
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Figure 9: Flywire [DMM∗22] is a crowd-sourced and gamified
proofreading platform for a fruit fly dataset.

users and proofreaders. FlyWire is designed to make edit operations
fast and traceable in a many-user environment and ultimately scale
up to whole-brain connectomics. Flywire represents the segmenta-
tion as a graph of supervoxels. A supervoxel is an atomic group of
voxels that is never split. Therefore, merge and split operations can
be represented as adding or removing nodes in that graph.

Similar approaches to crowd-sourcing will be necessary to
proofread recently acquired large human connectome datasets con-
taining more than a hundred million synapses [SCJB∗21].

6.5. Segmentation Provenance and Project Tracking

Manual and semi-automatic segmentation approaches and proof-
reading of automatic segmentations need considerable human ef-
fort. Depending on the data size and user experience, it might
take weeks to months to get to a fully segmented and proof-
read dataset. Since mapping neuronal circuits is time-consuming,
it is often done collaboratively. Accordingly, tools like Neu-
roBlocks [AABH∗16] help to coordinate these efforts by offering a
visualization system for tracking the state, progress, and evolution
of very large volumetric segmentation data in neuroscience. Sim-
ilarly, WebKnossos [BBB∗17], an open-source annotation, proof-
reading, and visualization tool, incorporates an annotation task
and project management interface and versioning system for user-
created annotations. DVID [KP19] is also a cloud-based version-
ing system for large-scale connectomics segmentation images. Ver-
sioning is particularly important when updating automatic segmen-
tations during proofreading.

7. Visual Exploration & Analysis

Imaging and segmentation of connectomics datasets reveal ex-
tremely complicated neuronal shapes and neuronal circuits. Auto-
mated analysis methods alone are not enough to capture their full
complexity and to translate the data into insights for neuroscien-
tists. Therefore, visualization tools are essential to make sense of
the available information. These tools need to scale to vast amounts
of data and, at the same time, find a good balance between enabling
complex analysis while limiting mental load.

In the following, we briefly review essential data structures

specifically designed for organizing heterogeneous image stacks,
segmentation data, and metadata for fast data access (Sec. 7.1).
We then describe methods for spatial exploration (Sec. 7.2) and
connectivity exploration (Sec. 7.3). We categorize spatial data ex-
ploration approaches based on segmentation availability and how
the segmented data is represented, either as geometry or as volume
data. In Sec. 7.4 we describe interactive visualization-based analy-
sis approaches, including neuron shape analysis, spatial neighbor-
hood analysis, as well as visual query systems that combine spatial
and connectivity analysis. Finally, we describe current visualiza-
tion approaches for connectomics that focus on communication and
presentation purposes (Sec. 7.5).

7.1. Data Structures for Connectomics

Nowadays, some connectomics data sets already exceed petabytes
in size [SCJB∗21, YBB∗20]. Therefore, visual analysis ultimately
depends on efficient and sophisticated data management methods
to access imaging and connectivity data.

Data Compression and Multi-Resolution Data Structures. For
efficient data storage and access, segmentation volumes can be
compressed by exploiting large homogenous segment regions with
no natural relationship between segment ids [MHL∗17]. This
method can reduce data storage of low-frequency segmentation
volumes by a factor of 600-2,200x. In addition, efficient render-
ing of meshes and volumes depends on multi-resolution data struc-
tures that reduce the required GPU memory and allow for adap-
tive resolution changes based on the viewers’ distance. For that,
either mesh compression techniques [GHS∗22], multi-resolution
data structures [DFM02, HBWP12] or adaptive rendering methods
can be used [GCBM∗17].

Connectivity Data. Large connectivity graphs often exceed
the size of consumer hardware working memory. Connectiv-
ity analysis tools like NeuPrint [CDU∗20] (see Sec.7.4.3) build
on existing technologies like neo4j’s graph querying language
Cypher [FGG∗18], for analyzing neuronal connectivity graphs.
Custom data structures for combining connectomics connectivity
data with other data modalities have also been proposed. Gan-
glberger et al. [GKHB20] present a data structure for query-
ing large-scale connectivity matrices. They store voxel-wise con-
nectivity in a spatially organized way using space-filling Hilbert
curves [Hil35]. Voxel-wise connectivity represents a single voxel’s
cumulative connectivity with a volume of interest (VOI). Addition-
ally, connectivity matrices are stored at multiple resolutions. For
instance, a single matrix element in a four times downsampled con-
nectivity matrix corresponds to four voxels in the image volume.
Connectivity matrices can also be aggregated by brain regions so
that one element in the matrix corresponds to all voxels of a brain
parcellation. The matrix can be further compressed by only taking
non-zero values into account, exploiting sparseness.

Cloud-based Data Stores. The open connectome project
(OCP) [BKK∗13] provides a scalable database cluster for the anal-
ysis of large connectome data sets that is widely used in the
connectomics community. The database supports the storage of
large-scale imaging volumes, spatially registered image annota-
tions, and metadata. Scalability is achieved by partitioning the vol-
ume into cuboids, which are processed on multiple physical nodes.
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Figure 10: Immersive visualization of a large wide field microscope
volume [BJA∗19]. © 2018 IEEE. Reprinted, with permission.

Morton-order space-filling curves assign a unique index to each
cuboid to ensure similar indices for contiguous regions. Addition-
ally, they store a multi-resolution hierarchy for each volume. The
current level of the resolution hierarchy determines the size of the
cuboids and the cluster workload. OCP offers an interface to the
data through a RESTful API, making the data accessible through
web services. GET-requests can extract an arbitrary subvolume
from the database and download it to the client for local analy-
sis. The OCP cluster also supports simple metadata queries and
is widely used as the data backend in different connectomics ap-
plications [VPF∗18]. The brain observatory storage service and
database (BossDB) [HKG∗22] is a newer generation cloud-based
data access system for petascale neuroscience imaging datasets.
Their spatial database implements a storage hierarchy that man-
ages data transfer between affordable, persistent data storage and an
in-memory data storage like Redis. Finally, many modern connec-
tomics research projects [VMH∗16, SXJ∗20, CBB∗21, SCJB∗21]
opt to store their large datasets in established cloud services such
as Google Cloud Storage or Amazon Webservices. For example,
CloudVolume [SCK∗21] is a serverless client python interface that
enables random access to precomputed arbitrarily large image vol-
umes, segmentations, and mesh data.

7.2. Spatial Exploration

Before performing a detailed analysis, scientists often want to get
an overview of the available imaging and segmentation data and
the structures they contain. This includes looking at slices (cross-
sections) or volume visualizations of unsegmented data, or viewing
the segmented structures in 3D using either surface meshes or voxel
segmentation data. To help users understand the complex spatial
shapes of neurons, 3D visualization is essential. Table 7.2.1 gives a
summary of different spatial exploration methods.

7.2.1. Unsegmented Data

After data acquisition and registration, connectomics data are not
(yet) segmented. In some cases, segmentations are hard to compute
due to a lack of sufficient training data, or alternatively labeling
structures manually would take too much effort. In other cases, a
segmentation is not even needed, and experts prefer exploring the
raw imaging data. In these cases, spatial exploration tools for un-
segmented volume data are used, where volume rendering typically
employs the concept of transfer functions, mapping raw data values
to optical properties in order to distinguish different structures.

Light Microscopy Volume Exploration. FluoRender [WOCH12,

Figure 11: Virtual GPU memory hierarchy [HBWP12] for petas-
cale volume rendering, combining a hierarchy of resolution levels
(horizontal axis) with a hierarchy of page tables (vertical axis). ©
2012 IEEE. Reprinted, with permission.

WOH∗17] is a framework for visualizing multichannel fluores-
cence microscopy data that has been used to render neuronal tis-
sue. Structures imaged in up to 100 channels are visualized by
exploiting multi-dimensional transfer functions and sophisticated
capabilities for channel intermixing. FluoRender also provides the
possibility for users to perform freehand segmentation guided by
the interactive visualization. Boorboor et al. [BJA∗19] have intro-
duced a technique to visualize neuronal structures in large light mi-
croscopy raw images without the need to apply computationally
and performance-wise expensive image deconvolution processing
algorithms. Moreover, they maximize visual acuity for visualizing
massive brain datasets by deploying their visualizations on an im-
mersive gigapixel-resolution facility [PPKM15] (see Fig. 10).

Large-Scale Volume Visualization. There are several differences
that distinguish volume visualization approaches for connectomics
EM datasets in comparison to other applications of volume render-
ing: First, the size of large EM volumes necessitates highly scal-
able approaches relying on multi-resolution data structures and ef-
ficient rendering techniques. Second, EM datasets are often very
anisotropic with the z dimension being at a much lower resolution
than the xy plane, which needs special consideration for efficient
data storage and to reduce artifacts during rendering.

Hadwiger et al. [HBWP12] tackle the size of petascale volume
data via a virtual GPU memory architecture for multi-resolution
volume data. Multiple levels of page tables provide full scalability,
by also virtualizing the page tables themselves, while supporting
output-sensitive multi-resolution rendering via a fully virtualized
3D mipmap structure (see Fig. 11). This basic architecture is more
efficient than standard octrees for highly anisotropic datasets such
as EM data. Further, the authors propose a visualization-driven
pipeline where data loading and rendering is triggered on-the-fly
during the ray-casting pass, depending on the current view. Volume
bricks are only uploaded to the GPU if the ray-caster requests a
missing brick. Furthermore, this approach supports dynamic acqui-
sition of microscope data, as data bricks needed for rendering can
be reconstructed at runtime.
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Table 1: Visualization approaches for spatial exploration of con-
nectomics data. We classify tools based on data modality, their
support for volume rendering (Vol Ren) and whether they display
segmentation data as volumes (Vol) or meshes (Mesh).

Data Vol Segmentation Notes
LM EM Ren Vol Mesh

[WOH∗17] • • general purpose tool

[BJA∗19] • • enhanced visualization of
WF microscopy images

[PRL∗10] • • • early system for neuron
tracing

[GBM∗21] • • • hybrid rendering for un-
certainty of segmentation

[WBH14] • • • 3D viewer for SWC skele-
ton files

[MSBS∗21] • • • widely used, scalable slice
and 3D mesh view

[TRFE∗16] • • analysis and comparison
of pyramidal neurons

[HBWP12] • • handles large anisotropic
data

[BHAA∗13] • • • scalable volume rendering
for segmented volumes

[BAAK∗13] • • • interactive visual queries

[HAAB∗18] • • •
efficient empty-space
skipping for tubular
structures

[BMA∗19] • • • scalable culling for seg-
mentation volumes

In addition to standard GPU-based approaches on workstations
or GPU clusters, recent web technologies are starting to make teras-
cale visualization within web browsers feasible. Usher and Pas-
cucci have shown that, in principle, a high-performance terascale
framework can be built using WebAssembly and WebGPU [UP20].
They combine data streaming and caching, on-the-fly decompres-
sion, isosurface extraction from volume data, as well as point cloud
rendering into an interactive tool that is able to tackle terascale data
sets, including connectomics data.

7.2.2. Segmented Data

Segmented datasets allow targeted inspection of individual neu-
ronal structures and circuits. Therefore, neuroscientists most com-
monly segment their data to increase analysis and visualization
quality. Segmented data is typically stored on a per-voxel basis, re-
sulting in an additional segmentation (or label) volume that stores
the segment ID for each voxel. Visualization algorithms can ei-
ther directly use the labeled voxel data or, alternatively, use pre-
computed surface meshes of each labeled structure in the segmen-
tation volume. The advantage of voxel-based segmentations is that
they can be easily integrated into the volume rendering pipeline,
enabling scientists to glance inside segmented structures and e.g.,
see cell organelles within segmented neurons. On the other hand,
surface meshes are much more compact to store and more efficient
to render but only give insight into the outside (i.e., the surface) of
a segmented structure. Below, we group different approaches based
on whether they (mainly) work on voxel-based segmentation data,
surface meshes, or use a combination depending on structure type.

Volumetric (Voxel) Segmentation Data. To handle large, seg-
mented EM data, Beyer et al. [BHAA∗13] extended their previous

Figure 12: The depth complexity (number of space skipping oper-
ations) of standard octree empty space skipping (left) vs. Sparse-
Leap [HAAB∗18] (right). Brighter is slower (more operations). ©
2018 IEEE. Reprinted, with permission.

virtual memory architecture for raw (unsegmented) petascale vol-
ume data [HBWP12] to include petascale segmentation volumes,
by adding an additional voxel cache for integer segmentation data.

ConnectomeExplorer [BAAK∗13] extends the above frame-
works for petascale volume visualization [HBWP12, BHAA∗13]
with additional metadata for neuronal structures, synapses, and
connectivity information. A visual query language then leverages
this metadata for the interactive, semantic specification, and visual
analysis of correlations between structures of interest. More details
of this visual query interface are given in Section 7.4.3.

More recent works aim to further optimize volume rendering
performance of large segmented EM datasets by optimizing culling
and empty-space skipping strategies. Segmented petascale volumes
often contain millions of segmented structures, typically resulting
from machine learning algorithms. This large number of labels
makes efficient querying and rendering structures of interest chal-
lenging. To tackle this problem, Beyer et al. [BMA∗19] present
a scalable culling architecture that combines probabilistic and de-
terministic data structures for efficient hierarchical culling (filter-
ing) of segmented connectomics data sets comprising millions of
segmented structures. The culling data structure is hierarchical and
data-adaptive, choosing the most suitable approach for data repre-
sentation locally, depending on actual data characteristics, e.g., the
number and distribution of integer label values. For fast, output-
sensitive culling for visualization, the hierarchical space subdivi-
sion also incorporates down-sampled multi-resolution data.

In addition to the large number of objects, connectomics data
contain many finely detailed and thin structures, such as axons and
dendrites. Rendering these structures fast enough is a tremendous
challenge, because traditional empty space skipping techniques for
ray-casting incur significant overhead for data lacking large con-
tiguous areas of empty space. To alleviate performance problems
due to a fine-grained fragmentation of space caused by fine struc-
tures, the SparseLeap [HAAB∗18] method for empty space skip-
ping combines fast GPU rasterization, modern GPU features intro-
duced for order-independent transparency, and volume ray-casting
to achieve better scalability for the visualization of highly-detailed,
segmented connectomics data (see Fig. 12). SparseLeap interac-
tively adapts to changes in the selected set of neuronal structures,
for example due to interactive query evaluation as in the Connec-
tomeExplorer [BAAK∗13] framework.

In summary, volume rendering methods for segmented EM
datasets all focus on computationally scalable approaches. They
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Figure 13: WebGL-based rendering in Neuroglancer [MSBS∗21]
of the FlyEM hemibrain dataset [SXJ∗20] showing an EM slice
and three out of 25,000 segmented neurons.

build on multi-resolution data structures and visualization-driven
pipelines and techniques such as efficient culling and empty space
skipping to achieve interactive framerates for rendering datasets
containing millions of finely segmented objects.

Mesh Segmentation Data. Displaying segmented connectomics
structures as surface meshes is often coupled with slice views of
the raw image data, to give users a better context of the data. Neu-
roglancer, for example, is an open-source, web-based viewer for
volumetric microscopy and segmentation data built upon WebGL
(see Fig. 13). A tile-based architecture supports multi-scale visual-
ization of petascale imaging and segmentation volumes, making it
one of the most scalable web-based viewers for connectomics data.
Large data sets and segmentation volumes can be stored in cloud
services such as Google Cloud Storage. The Neuroglancer client
subsequently downloads small chunks of the data set for visualiza-
tion. Neuroglancer overlays cross-sectional views of microscopy
images with multi-scale 3D surface meshes and skeletons. It is cur-
rently one of the most widely used visualization software for large
connectomics data sets. However, Neuroglancer is designed purely
for data viewing and currently does not support any analysis func-
tionality natively. Sharkviewer [WBH14] is a minimalistic, web-
based interactive visualization library to visualize neuronal skele-
tons. It is used as a plugin for NeuPrint [CDU∗20]. Segmentation
meshes are the data type of choice for many visual analysis tools
in connectomics, as meshes are smaller and easier to handle than
segmentation volumes. We will describe these visual analysis tools
and their visualization capabilities in more detail in Sec. 7.4.

Mesh and Volumetric Segmentation Data. Several approaches
use both, a volumetric and mesh representation of segmentation
data, mainly for light microscopy data. V3D [PRL∗10] was one
of the first frameworks for the visualization of gigabyte-scale light
microscopy image stacks. It is designed as an extensible software
framework, that can be adapted to address different biological prob-
lems. The paper demonstrates the configuration of a V3D plugin
designed to reconstruct neurons. This work was one of the first vi-
sual analysis tools for connectomics data that implicitly addressed
scalability to data size. They render a lower-resolution representa-
tion of the volume once the user interacts with the 3D navigation.
Their approach is still limited by the memory size of the GPU but
already adds features to increase rendering efficiency. On the other

hand, they contribute a usable way to select an x-y-z location di-
rectly from the 3D visualization using only a few mouse clicks.
The user must select the desired point in the 3D visualization from
two different viewing angles.

More recently, NeuroConstruct [GBM∗21] has leveraged a hy-
brid rendering technique to visualize the uncertainty of CNN seg-
mentation results in light microscopy images. It renders areas of
high segmentation confidence as isosurfaces, while uncertain seg-
mentations are visualized by direct volume rendering.

7.3. Connectivity Exploration

Since the ultimate goal of connectomics is to reconstruct the com-
plete wiring diagram of a brain to map structure to function, it is
essential to provide visual tools for analyzing connectivity infor-
mation. Connectivity can be studied at multiple levels of detail and
in many different ways. Many visualization approaches display a
connectivity graph as a node-link diagram where information about
neuron shape is lost (e.g., [SCJB∗21]), while other approaches still
take the morphology of neurons into account (e.g., [AABS∗14]). In
this section, we focus on visualization methods for neuronal con-
nectivity graphs. We summarize the different methods in Table 7.3.

Node-Link Views. The most straightforward approach to visualiz-
ing the reconstructed connectivity is to show the resulting graph.
In a neuronal connectivity graph, neurons are represented as nodes,
and synapses are abstracted to edges between nodes. Abstracting
the imaging data into graphs helps reduce the size of tera- and
petabyte data sets. However, any information about cell morphol-
ogy and spatial relations is lost.

Several tools support node-link diagrams for displaying neuronal
connectivity information (e.g., [BAAK∗13, AMG∗11, SCHT09].
However, these graphs quickly get visually overloaded when the
data size increases. Recently, Shapson-Coe et al. [SCJB∗21] have
imaged one cubic millimeter of human brain tissue at nanoscale
resolution, leading to 1.4 petabytes of imaging data. They render
the connectivity of specific cells as a simple node-link diagram.
The displayed graph is extremely dense, and efficient connectiv-
ity analysis remains an open problem at this scale. In addition, hu-
mans have proofread only a small subset of neurons, and, therefore,
connectivity errors remain. This shows the importance of effective
crowd-sourced proofreading (Sec. 6.4).

Many approaches studying neuron connectivity are limited to
small but densely segmented subvolumes of the brain. This lim-
its the analysis by considering incomplete reconstructions of neu-
rons that were truncated by the bounds of the volume. Kunst et
al. [KLM∗19] present the first brain-wide wiring diagram at cellu-
lar resolution for vertebrates. Specifically, they acquired over 2,000
sparsely individually labeled neurons and gene expression data in a
reference atlas of zebrafish larvae brains. They visualize neuronal
connectivity with node-link diagrams and an adjacency matrix. It
incorporates features to search for morphologically similar neurons
using NBLAST [CMO∗16] (see Sec. 7.4.1), query neurons based on
their trajectory through brain regions, and access metadata of indi-
vidual neurons.

Other connectivity analysis approaches include diverse imaging
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Table 2: Connectivity visualization approaches. We classify tools
based on data modality, visualization method, and whether the vi-
sualization displays morphological (i.e., structural) information for
neurons (Morph. shown). Note, that many tools for neuron tracing
or segmentation also include node-link diagrams, but have not been
included in this table for brevity.

Data Vis Method Morph. Notes
LM EM shown

[GSF∗19] • node-link connectivity queries
in multimodal data

[SBS∗13] • circuit wiring dia-
gram • connections based on

arborization overlap

[MPL∗17] •
mosaic matrices,
mirror glyphs,
Kiviat diagrams

temporal connectiv-
ity visualization

[BAAK∗13] • node-link interactive (connec-
tivity) queries

[SCJB∗21] • node-link
connectivity graph of
1 cubic milimeter of
human brain tissue

[KLM∗19] • node-link,
adjaceny matrix

inter-region connec-
tivity matrix with
clustering of similar
regions.

[CDU∗20] • adjacency matrix adj. matrix between
brain regions

[AABS∗14] • 2D subway line
metaphor •

multi-scale connec-
tivity exploration and
visualization

modalities to augment connectivity information. For example, spa-
tial gene expression shows the influence of particular genes on spe-
cific brain regions. To study the correlations between gene expres-
sion and neuron connectivity, Ganglberger et al. [GSF∗19] devel-
oped BrainTrawler. This interactive web application allows query-
ing and analyzing connectivity and gene expression data. Combin-
ing these with heterogeneous data sources helps correlate spatial
gene expressions to local connectivity patterns. BrainTrawler or-
ganizes connectivity information at different levels of scale. While
neuron-based connectivity helps to understand circuits at the low-
est level, analyzing connectivity between brain regions is also sup-
ported. A custom data structure [GKHB20] maintains interactivity
and fast querying of multiscale and multimodal data (see Sec. 7.1).

Abstract Connectivity Views. In contrast to standard node-link
views, several visualization approaches have looked at brain con-
nectivity from different angles.

For instance, Neurolines [AABS∗14] uses a subway map
metaphor to simplify connectivity analysis in the connectome (see
Fig. 14). The complex shapes of neurons make connectivity anal-
ysis in 3D complicated due to visual clutter. Therefore, Neurolines
projects the 3D skeleton of neurons into 2D while preserving neu-
ron topology and relative distances. Hovering over synapses on the
skeleton reveals additional information, such as a view of the orig-
inal EM data and the abstracted skeleton of the connecting neuron.
To enable a scalable analysis of connectivity in large brain volumes,
Neurolines offers multiple levels of abstraction in different views.

Based on confocal light microscopy images, Neu-
roMap [SBS∗13] has employed circuit wiring diagrams to
represent all possible connections of neurons in the fruit fly
(Drosophila melanogaster) brain. The more overlap the arboriza-

Figure 14: Neurolines [AABS∗14] projects the complex topology of
neurons and their connections to 2D using a subway map metaphor.
© 2014 IEEE. Reprinted, with permission.

tions of two neurons have, the more likely it is that they form a
synapse between them [BS13]. Neuromap abstracts the different
elements of neurons, such as the cell body, arborizations, and pro-
jections, into a graph structure. This graph is then used to visualize
the overlap of arborizations in a modified node-link diagram, which
is further augmented by highlighting different brain regions and
allowing details on demand. RemBrain [MPL∗17] also operates on
light microscopy data but tracks temporal connectivity by using
mosaic matrices, Kiviat diagrams, and glyphs. RemBrain is based
on the previous visualization method Swordplots [MFL∗16].

Finally, matrix views showing the connectivity between brain
regions are heavily popular in macro-scale connectomics. For
nanoscale EM data, NeuPrint [CDU∗20] employs a matrix view
for visualizing the connectivity between brain regions in the fruit-
fly brain. Generally, matrix views and abstract connectivity views
scale better to large graphs than node-link diagrams. However, in-
teractive querying and analysis tools for large graphs are essential
to explore and understand the data in detail, which will be discussed
in the following section.

7.4. Visualization-Focused Analysis

One of the final steps in the connectomics pipeline consists of the
visual and quantitative analysis of the initially explored data. This
step relies on the combined spatial data analysis in correlation to
connectivity data. Furthermore, this step requires interactive means
for querying the data to enable neuroscientists to generate and test
hypotheses in petabyte-scale data more efficiently. We summarize
methods for visualization-focused analysis in Table 7.4.1.

7.4.1. Neuron Analysis

Neuron Quantification. In addition to displaying the raw spatial
data, some tools augment visualizations with numerical features
for a more quantitative analysis of the complicated 3D structure
of neurons. Several proposed works quantify neurons and neuronal
shapes or compute pairwise comparisons between neurons.

For instance, Al-Thelaya et al. [ATAG∗21] use a shape descrip-
tor to quantify and classify 2D/3D nuclei shapes. Their descriptor
measures the discrete curvature along closed and resampled con-
tours of the shape. In addition, it is invariant to translation, rota-
tion, and parameterization. They use 3D meshes of brain cell nu-
clei to compute a feature vector to evaluate the performance and
train a support vector machine (SVM) using radial basis functions
to predict cell types. They found that neuron nuclei form different
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Figure 15: 1D "barcode" visualization of the hierarchical tree lay-
out of neurons [CFBH10]. Black segments refer to terminal seg-
ments, while green segments start and end at a branching point.

clusters per cortical layer, making it hard to generalize cell type
classification for all neurons.

Instead of only characterizing soma, NBLAST [CMO∗16] is a
technique for the quantitative pairwise comparison of full neurons.
It uses spatial location and branching patterns to compute a sim-
ilarity score. NBLAST divides the query and target neuron into
small segments, each storing a spatial location and a tangent vec-
tor. For each segment, the nearest neighboring segment is found
(using the Euclidean distance), and their tangent vectors are com-
pared. NBLAST uses both euclidean distance and the dot product
of the tangent vectors to compute the similarity score. NBLAST
can identify biologically meaningful neuronal clusters among dif-
ferent data modalities and has been used to identify the same neu-
ron in light microscopy and EM datasets. Furthermore, a similar-
ity score can be computed efficiently on consumer-level hardware
without training time. Schubert et al. [SDJ∗19] use cellular mor-
phology networks (CMNs) for the automatic quantification of neu-
ronal shapes. Their method creates morphology embeddings (Neu-
ron2Vec), which were used to detect glia cells in high-resolution
EM data and to identify segmentation errors.

Interactive Neuron Analysis & Visualization. While the above
approaches for neuron quantification aim to automatically provide
results such as similarity scores or cell type predictions, a different,
more user-centric approach is followed by interactive, visual neu-
ron analysis tools. Recently, ZeVis [CHM∗21] has made the interac-
tive visual analysis of cell nuclei morphology and their distributions
possible. EM segmentations of nuclei can be compared interac-
tively and filtered by brain region or specific shape attributes. They
visualize nuclei distributions using 3D histograms and their loca-
tions using 2D multi-axis views. For the purpose of nuclei analysis
and model training, Lin et al. [LWP∗21] and Mu et al. [MYT∗21]
provide a dataset containing around 170,000 nuclei segmentations.

Instead of the analysis of cell nuclei, PyramidalEx-
plorer [TRFE∗16] focuses on the visual analysis of pyramidal
neurons, a specific neuron type. Pyramidal neurons [DF92] exhibit
long branches spanning multiple cortical areas. PyramidalExplorer
not only has data viewing capabilities but also supports morpho-
logical data analysis. For instance, numerous quantitative attributes
for each spine are extracted, such as volume, surface area, position,
and maximal diameter. Spines can be color-coded according to
selected morphological features. They can also be inspected in
detail in a separate 3D view. PyramidalExplorer implements a

content-based information retrieval system (CBIR). A signature
is computed based on a user-defined data selection and used to
compare different data selections. For instance, a neuron signature
is a numerical score based on spine attributes. This helps to query
the data set for similar pyramidal neurons.

In comparison, Pastor et al. [PBB∗21] use more high-level and
natural features to quantify the spatial shapes of neurons. They
build on a set of existing tools [PMT∗15, GCBM∗17, TRFE∗16]
to develop a unified framework for morphological neuron analysis
at different levels of abstraction. Their framework provides high-
level abstract representations of the trajectory of neurons through
different cortical layers. When studying neuronal morphology in
greater detail, the tool allows for comparing quantitative features
of small neuronal structures, such as dendritic spines. For instance,
users can visualize juxtaposed 3D models of spines and sort them
based on spine length, volume, surface area, or any other feature
that has been extracted from the data in a preprocessing step. In
comparison, NeuroMorphoVis [AHE∗18] supports a broader set of
tasks from morphological skeleton and soma analysis to neuron
data handling and generation of high-quality renderings. Cuntz et
al. [CFBH10] propose a method to summarize the neuronal branch-
ing pattern in a 1D "barcode" visualization (see Fig. 15). They use
the hierarchical tree structure of neurons and identify all branch-
ing and terminal points of the skeleton. Each segment of the tree is
visualized as one section in the barcode. The length of the section
directly relates to the length of the segment in the skeleton. Green
sections start and end at branching points, and the black sections
indicate a terminal segment. The neuron analysis & visualization
(Navis) python library [SBJ∗21] build ontop of natverse [BMJ∗20]
is designed to analyze and visualize neuron morphology. It imple-
ments state-of-the-art algorithms such as pairwise neuron compari-
son with NBLAST [CMO∗16], neuron simplification tools, and ad-
vanced neuron plotting algorithms. By labeling branches in the neu-
ron trees by their distances to the soma, simplified 2D versions of
neurons skeletons are visualized. Navis functionality is based on an
interface for programmatic access to the FlyEM [XJL∗20] data set.
Neuron skeletons used in Navis can be generated using the kimi-
maro python library [SBLW21]. Kimimaro rapidly generates skele-
tons from dense segmentation volumes. It implements a TEASAR-
derived algorithm [SBB∗00]. Neuromorph [JNC∗15, JBK18] also
supports the morphological analysis of neurons, but instead of a
programmatic python interface, it is integrated into the 3D model-
ing software Blender. Therefore, users have a visual interface for
extracting distances or labeling parts of neurons such as spines.

While previous approaches [SBJ∗21, CMO∗16, SCK∗21,
JBK18] focus on specific properties of neuronal morphology,
SNT [AGE∗21] generates streamlined connectivity diagrams and
combines multiple quantitative attributes of neurons to study how
they broadcast information between brain regions. For instance,
they extracted the normalized cable length and the number of ax-
onal endings in the MouseLight database [WBF∗19] to identify the
number of brain areas innervated by a particular cell.

7.4.2. Neighborhood Analysis

Spatially imaging the brain at a high resolution lets researchers
conclude about connectivity between neurons and helps them un-
derstand the interactions of neurons with other cell types. This is
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Table 3: Visualization-focused analysis approaches. We classify
tools based on data modality and the type of analysis they sup-
port: Neuron Analysis (Neur. A.), Neighborhood Analysis (Nbh. A.)
or Interactive Queries (Qu.).

Data Neur. Nbh. Qu. Notes
LM EM A. A.

[AGE∗21] • • quantification of neuronal
anatomy

[AHE∗18] • • morphology analysis of neu-
ronal skeletons

[TRFE∗16] • • • visual analysis of pyramidal
neurons

[BSG∗09] • • • semantic, spatial & neighbor-
hood queries

[ATAG∗21] • • • Shape descriptor for cellular
nucleii

[PBB∗21] • • • multilevel navigation

[CFBH10] • • • 1D barcode visualization of
neurons

[SBJ∗21] • • • • neuron plotting and morpho-
logical analysis

[SBLW21] • • • neuron skeletonization

[CMO∗16] • • pairwise neuron similarity
computation without training

[SDJ∗19] • • neuron morphology embed-
dings

[CHM∗21] • • cell nuclei analysis

[JBK18] • • • neuron analysis in Blender

[MAAB∗18] • • glia and neuron interactions

[TCG∗22] • • scalable comparison of neu-
ronal spatial neighborhoods

[ACA∗19] • • interactive glycogen absorp-
tion analysis

[CBH∗15] • • immersive analysis of glyco-
gen clusters

[ABG∗18] • • immersive analysis of
metabolic processes

[CDU∗20] • • • interactive queries of the
FlyEM hemibrain

[BAAK∗13] • • • query algebra for large EM
data volumes

important because support cells and the location and size of cell or-
ganelles like mitochondria also influence neuronal function. Most
spatial neighborhood analysis focuses on the relationship between
glia cells and neurons. Glia cells spatially surround and insulate
neurons and support them. Mohammed et al. [MAAB∗18] pro-
pose Abstractocyte, a visual tool to study the interaction between
astrocytes and neurites in EM volumes interactively. Astrocytes
are special star-shaped glia cells. The tool allows for the interac-
tive abstraction of astrocytes and neurites to simplify their com-
plex shapes. The user interactively sets a point in a 2D abstrac-
tion panel to select the abstraction level for neurons and astrocytes.
The horizontal coordinate determines the abstraction of the neurite,
while the vertical axis sets the astrocyte abstraction. In addition,
Abstractocyte allows for spatial queries and clustering of glyco-
gen granules. While Abstractocyte focuses on the visual explo-
ration of interactions between astrocytes and neurites only, Troidl
et al. [TCG∗22] propose a more general method to explore spatial
neighborhoods of neuronal structures. Their tool, Barrio, integrates
a scalable approach for comparing multiple spatial neighborhoods
using juxtaposed spatial 3D views and abstract 2D InfoVis views.

Similarly, Agus et al. [ACA∗19] study the energy metabolism in

Figure 16: The NeuPrint web application [CDU∗20]. The left col-
umn shows neurons with inputs from brain region A and outputs
from brain region B. Two stacked bar charts are displayed for each
neuron, visualizing the distribution of brain regions from the inputs
(top chart) and outputs (bottom chart). The right column shows an
interactive 3D rendering of a neuron skeleton.

neuronal tissue using astrocytic glycogen granules, visible in high-
resolution EM images. They follow a more quantitative approach
than [MAAB∗18] and model energy absorption with a glycogen
absorption map. This map stores potentially absorbed energy for
each position in the volume. They augment connectivity informa-
tion shown as a node-link diagram with the energy absorption map
and incorporate it into a 3D volume rendering view.

Immersive Neighborhood Analysis. Neighborhood analysis also
suffers from limitations of the 2D screen to display complex spa-
tial structures. Therefore, researchers have experimented with im-
mersive technologies to offer a more intuitive perspective on spa-
tial data. Cali et al. [CBH∗15] use VR to study the distribution of
glycogen granules inside astrocytes. The cloud of glycogen gran-
ules seemed random when looking at conventional 3D renderings
on 2D screens. However, VR helped them to identify clusters in
the distribution of glycogen, which they later could automatically
detect using the DBSCAN-algorithm [EKS∗96]. Based on this ob-
servation, they conducted a quantitative analysis of the spatial rela-
tionship with the clusters to pre-or postsynaptic elements using the
Neuromorph Blender integration [JNC∗15, JBK18].

To study the metabolic support of astrocytic glycogen granules
on neurites in even greater detail, Agus et al. [ABG∗18] compute
a glycogen-derived lactate absorption map (GLAM). The amount
of absorbed energy depends on the size of the glycogen granule
and its distance to the neurite. They experiment with displaying the
absorption maps combined with 3D reconstructions of neurites in
a VR environment. In evaluating their method, the authors report
that users find analyzing GLAM-based visualization in VR at least
as valuable as using a desktop setup. Especially when analyzing
color-mapped data, users preferred the VR setup over a standard
visualization on a 2D screen.

7.4.3. Visual Query Interfaces

Interactive analysis and query systems are essential for investi-
gating today’s large connectomics datasets. Neuronal datasets and
connectivity graphs are so large and complex that looking at all
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Figure 17: ConnectomeExplorer [BAAK∗13] enables interactive
queries on petascale volumes, using a set-based algebra and hier-
archical queries. © 2014 IEEE. Reprinted, with permission.

parts of the data is quickly becoming infeasible. Therefore, scien-
tists need ways to find interesting areas in their data, filter quickly,
and query data to test their hypotheses.

NeuPrint [CDU∗20] is an analysis ecosystem that uses existing
graph databases such as neo4j to organize connectivity graph data
at different abstraction levels. NeuPrint tightly integrates an in-
teractive web application for viewing and querying connectomics
data. It shows an adjacency matrix to visualize the connectivity be-
tween brain regions. Each element in the matrix shows the number
of connections between brain region A and brain region B. By se-
lecting a matrix element, users see detailed information about the
neurons connecting these two brain regions (see Fig. 16). Individ-
ual neurons can be selected, and their skeletons are visualized in
3D. Additionally, NeuPrint displays an overview for each neuron,
showing from which brain region input neurons (top row) come
and to which brain regions outputs (bottom row) go, as two stacked
bar charts (see Fig. 16). NeuPrint users can also query connectivity
information using the established Cypher language [FGG∗18].

In comparison, BrainGazer [BSG∗09] focuses more on query-
ing neuronal structures based on spatial features instead of connec-
tivity information. It combines a direct volume rendering (DVR)
approach with three types of visual queries in the fruit fly’s brain.
Semantic queries are initiated by clicking on an object, and if ob-
jects are occluded, clicking multiple times flips through all of them.
Object queries allow searching the proximity of neuronal structures
for interesting features. To do so, BrainGazer computes the closest
distances between all objects and allows filtering the neighborhood
of a specific object for other close objects. Finally, path queries
select an arbitrary region in the brain using a freehand drawing se-
lection tool. The selected region, including all selected objects, is
loaded into a view. This querying method allows for more accurate
capturing of anatomical areas than rectangular or circular selection
tools. BrainGazer precomputes lookup volumes and distances ta-
bles to efficiently access close objects. Data used in BrainGazer
was reconstructed from confocal microscopy images.

ConnectomeExplorer [BAAK∗13] combines both spatial and
connectivity queries with a high-performance 3D interactive visu-
alization framework of segmented EM volumes. It implements a
query algebra that allows users to filter and search the data interac-
tively, using efficient hierarchical query evaluation (see Fig. 17).
The tool supports three types of queries: Spatial queries allow

searching neighborhoods of neuronal structures in a region of in-
terest (ROI), topological queries help study neuronal connectivity,
and attribute queries allow searching automatically or manually la-
beled attributes of neurons, such as the number of spines or the
number of ventricles in a cell. To efficiently query large volumes
of brain tissue interactively, ConnectomeExplorer uses hierarchical
and multi-resolution data structures.

7.5. Visualization for Communication

Most visualization tools for connectomics focus on proofreading,
exploration, and analysis of the data. However, initial research has
been done on visualization for communication purposes in connec-
tomics in recent years. Brainrender [CTP∗21] is a python-based
open-source interactive 3D viewer for anatomically registered data.
Brainrender aims to generate publication-ready, high-quality il-
lustrative visualizations with minimal programming requirements.
The main goal is to support the visualization of data registered to
any anatomical atlas. This is achieved by tightly integrating the tool
with the BrainGlobe Atlas [CPT∗20], which provides a unified in-
terface to many publicly available reference atlases. Visualization
with Brainrender is not limited to microscale data of single neurons
but combines data of different scales and imaging modalities.

8. Public Data Sets and Open Source Tools

Connectomics relies heavily on open science [Fre15]. Data acqui-
sition, storage, and processing requires tremendous efforts and re-
sources, which is only feasibly for some larger research labs and
their industrial partners. Therefore, other researchers depend on
publicly accessible data and tools to test their own hypotheses. This
section gives an overview of the most relevant data sets and open-
source tools developed and maintained by the scientific community.

8.1. Data Sets

We summarize openly available connectomics data sets and their
key characteristics in the following. All datasets are listed in Ta-
ble 8.2. Furthermore, the Open Connectome Project [BKK∗13], the
Neuro Data Register [Neu], and BossDB [HKG∗22] host a number
of different connectomics datasets, both for light microscopy and
EM. Similarly, the website NeuroMorpho [Uni] hosts digitally re-
constructed neurons and glia associated with peer-reviewed publi-
cations. Bonney et al. [BCSH∗22] recently surveyed publicly avail-
able EM datasets to study microvascular structures in the brain.

Light Microscopy. While light microscope data sets require much
less memory space than EM and often do not have extensive seg-
mentation masks, they still provide a valuable resource for neu-
roscientists. The DIADEM challenge [BBC∗11] has produced six
online available light microscope data sets, each imaging a few neu-
rons. They were intended as training data for neuron segmentation
algorithms. Here, we explain two of these data sets in more detail.
The cerebral climbing fiber dataset contains three image stacks of
neurons in a rat brain, and the rat hippocampal CA3 interneuron
data set includes two neurons each in an imaging stack. Weiler
et al. [WCV∗14] used fluorescence microscopy to image over six
million cubic microns of cortical mouse brain tissue, stained with
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Figure 18: 4k incoming connections on a pyramidal cell in the H01
dataset [SCJB∗21] visualized in Neuroglancer [MSBS∗21].

synaptic proteins and at synaptic resolution. Bloss et al. [BCK∗16]
used both light microscopy and array tomography to image synap-
tic connectivity between interneurons and pyramidal cell dendrites.

EM. Recently, Shapson-Coe et al. [SCJB∗21] released the H01
data set, which covers one cubic millimeter of human brain tissue
imaged with EM (see Fig. 18). The data set is densely segmented,
including approximately 100 proofread cells. With 1.4 petabytes of
data, it is the largest connectomics data set published so far. Still,
the data set only covers a small fraction of the human brain. Larger
brain volumes are required to fully capture neuronal circuits that
span over long distances, especially for motif discovery.

The FlyEM hemibrain [XJL∗20] data set covers approximately
half of the fruit fly brain and includes segmentations. Compared
to the H01 [SCJB∗21] data set, it contains more proofread cells.
Therefore, it is currently considered the data set of choice for mo-
tif discovery. Similarly, Zheng et al. [ZLP∗18] imaged the whole
brain of the fruit fly with initially only a small subcircuit seg-
mented. However, this data set is currently in the process of be-
ing completely segmented and proofread using the crowdsourced
FlyWire platform [DMM∗22]. The FANC dataset [PHG∗21] is a
sparse connectome of an adult fruit fly. All neurons and synapses
involved in controlling leg and wing movement have been recon-
structed. The MICrONS data set [CBB∗21] contains one cubic mil-
limeter of brain tissue of a mouse. It combines EM images with
functional recordings of visual stimuli of 75,000 neurons, making
it the largest multimodal connectomics data set so far. Its smaller
predecessor data set is also available online [SMBC∗20,DTM∗21].
In 2015, Kasthuri et al. [KHB∗15] collected 660 GB of EM im-
ages of a mouse’s neocortex with partial segmentation. Wei and
Lin [WLFB∗20,WLL∗21,LWP∗21] made proofread segmentation
volumes for axons, mitochondria and cell nuclei publicly available.

8.2. Open Source Software Tools

Table 8.2 lists the most relevant open source software tools for
connectomics and also links to related Github repositories, web-
sites and documentation. We focus on open-source and ready-to-
use tools and software packages.

9. Future Research Directions

Connectomics research is a young subfield of neuroscience cur-
rently entering an exciting phase. The size of new data sets is grow-

ing continuously every year, allowing insights into larger and larger
subvolumes of the brain. Even a full connectome reconstruction of
a fly brain is now within reach [DMM∗22].

From here, a plethora of opportunities for novel visualization re-
search arises. Below, we highlight the areas that we think would
benefit most from novel visualization approaches, including scal-
able and combined proofreading and visual query systems, multi-
scale connectivity analysis, visual functional pathway exploration,
and the visual fusion of multimodal data and living tissue data.

9.1. Scalability

Connectomics data sets have increased from terascale to petascale
within the last decade due to advances in image acquisition. Neu-
roscientists even predict that a full brain connectome of a mouse
will likely be reconstructed within a decade [SCJB∗21, ABC∗20].
Therefore, scalability will remain the main research focus for each
step in the connectomics pipeline, including visualization.

Many of today’s large data sets are stored remotely on the cloud,
and users download only small chunks on demand. However, to
support interactive web-based visualization and analysis applica-
tions, scalable data formats are needed that support compressed
storage and interactive access and provenance tracking of segmen-
tations and concurrent multi-user access. These features will allow
researchers to integrate proofreading and subsequent updating of
the segmentation data into large-scale visual query and analysis
systems and further streamline the connectomics pipeline.

Furthermore, to make the segmentation and proofreading of even
larger datasets feasible, new approaches are needed that are inher-
ently scalable. Segmentation algorithms will continue to be im-
perfect, therefore, better human-AI collaboration is the way for-
ward to create usable connectome reconstructions. Dorkenwald et
al. [DMM∗22] present the first step in this direction, where an auto-
matically generated segmentation is continuously updated through
crowd-sourced human proofreading. New segmentation algorithms
should also be aware of their limits and forward complex cases
automatically to a human proofreader [JKL∗18]. Likewise, visu-
alization research should consider how to design these human-AI
interactions to support the reconstruction of large volumes in a rea-
sonable amount of time.

9.2. Large Connectivity Graph Exploration

Connectomics data allows researchers to evaluate actual wiring di-
agrams and discover the fundamental principles in neural circuit ar-
chitectures. However, the community is still in dire need of connec-
tivity analysis methods that explore neuronal connectivity at differ-
ent scales, ranging from small, local synaptic motifs to higher-level
connectivity patterns involving neurons in several cortical layers.
This should be approached as a multi-scale problem, where differ-
ent solutions are needed for varying levels of detail in the data.

Tools for motif querying for these data sets are just beginning
to be developed [MRJ∗21], and currently, all require an intuition
about a particular type of motif. Subgraph enumeration techniques
provide a promising direction to find connectivity motifs without
any prior hypotheses. Visualization research can help find ways to
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Table 4: Commonly used and publicly available connectomics data sets.

Name Sample Modality Physical Size #Neurons Synapses Reference
Climbing Fibers Rat LM 200 µm3 3 not imaged [BBC∗11]
CA3 interneuron Rat LM 200 µm3 2 not imaged [BBC∗11]

Weiler et al. Mouse LM 6×107µm3 not imaged
stained with synap-
tic proteins

[WCV∗14]

Bloss et al. Mouse
array tomography
TEM

1×106µm3 immunolabeled immunolabeled [BCK∗16]

H01 Human mSEM 1mm3 57K 133.7 M [SCJB∗21]

MICrONS 1 Mouse
two-photon cal-
cium imaging &
TEM

1.4× .87× .84mm3 120K 523 M [CBB∗21]

MICrONS 2 Mouse
two-photon cal-
cium imaging &
TEM

250 × 140 × 90 µm3 334 3.2 M
[DTM∗21,

SMBC∗20]

Kasthuri et al. Mouse SEM 1500 µm3 1897 1700 [KHB∗15]
Fly Hemibrain Fruit Fly FIB-SEM 250×250×250 µm3 25K 20 M [XJL∗20]

FAFB Fruit Fly
TEM camera array
(TEMCA)

8×107µm3 120
only small subset
segmented

[ZLP∗18]

Neuromorpho 16 species various various various various [Uni]
OpenConnectome various various various various various [BKK∗13]
DIADEM various various various various various [BBC∗11]

MitoEM Rat & Human multibeam SEM 2 ×30µm3 40K mitochondria not segmented
[WLFB∗20]

AxonEM Rat & Human EM 2×30µm3 various 18K axons not segmented [WLL∗21]

NucMM
Zebrafish &
Mouse

EM & micro-CT 0.1mm3 0.25mm3 170.000 nuclei &
7.000 nuclei

not segmented [LWP∗21]

FANC Fruit Fly TEM 0.023 mm3 >1000 motor & sen-
sory neurons

[PHG∗21]

intuitively specify complex connectivity motifs and visualize them
effectively in both abstracted form and 3D. Visualization research
can help find interactive and scalable ways to reduce the complex-
ity and dimensionality of connectivity motifs. Future research also
needs to investigate integrating more complex attributes into mo-
tif queries such as cell shape, brain region, and other topological
information. Furthermore, how to query large sets of connectivity
subgraphs for meaningful motifs remains an open question.

In addition, more visualization research is needed to develop
methods for the interactive exploration and analysis of large neu-
ral wiring diagrams, supporting multi-scale connectivity analysis,
and the combined analysis of highly detailed spatial image data and
large-scale connectivity data. Furthermore, with novel datatsets that
contain pre- and post-synaptic information, the visual exploration
of functional connectivity is now becoming possible. Therefore, the
visual analysis of synaptic chains in the data based on morpholog-
ical image features such as synapse strengths and the underlying
synaptic network is important for future research.

9.3. Multimodal Data Sources

Both optical imaging and EM come with specific drawbacks. EM
requires complex staining and can only image dead tissue, while
light microscopy is limited in its resolution. Both imaging tech-
nologies complement each other, and it is beneficial to use the
best of both worlds. Functional data has been combined with
EM [CBB∗21], and also saturated reconstructions of living brain
tissue at nanoscale resolution has succeeded recently [VMM∗22].

These advances raise exciting questions, also for the data visualiza-
tion community. How can we visually augment large brain circuits
with functional data? And how can we display changing connec-
tivity patterns in living tissue over time? Combining multiple data
modalities will lead to new research in registration algorithms, e.g.,
when combining the same tissue imaged with optical microscopes
and EM. When imaging living tissue in high resolution, neurons
and cell organelles move through the volume. Computer scientists
will need to develop new methods to identify interesting regions
of change and to track structures over time. Finally, how can we
interrogate these multimodal and multidimensional connectomics
datasets efficiently? Domain-specific query languages [BAAK∗13]
and techniques for intuitive visual user guidance are promising ap-
proaches and could allow neuroscientists to bridge the gap between
visual analytics and hypothesis generation.

10. Discussion and Conclusions

Connectomics data provide potential answers to many questions
about neural circuits that were not addressable previously. How-
ever, the challenge of approaching these questions is that connec-
tomics data is not readily amenable to analysis, given its size and
complexity. Until connectomics data began to be generated, neu-
roscientists would propose neuron structures and circuit architec-
tures drawn as simple cartoon diagrams. Invariably, however, these
models are vastly oversimplified compared to actual neurites and
synapses in large-scale connectomics data. In this sense, large-scale
connectomics data offers a paradigm shift by giving researchers, for
the first time, the opportunity to evaluate actual wiring diagrams
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Table 5: Open source tools for connectomics. We categorize each tool’s focus as either A & R (Alignment & Registration), SEG (Segmenta-
tion), EXP (Exploration), or ANL (Analysis). We report on multi-user support (MU) and link to each tools’ website and source code.

Name Focus MU Details Source Reference
A&R SEG PR EXP ANL Code

BigStitcher • large scale image alignment + rendering Github [HRRP∗19]
TeraStitcher • large scale image stitching Github [BI12]
MIST • stitching of large 2D image grids Github [CMB∗17]
TrakEM2 • • • image registration, annotation & segm. Github [CSS∗12]
Vaa3D • • • • visualization assisted analysis Github [BIP15]
FluoRender • • • confocal microscopy data analysis Github [WOH∗17]
Kimimaro • automated skeleton extraction Github [SBLW21]
Ilastik • object classification, counting & tracking Github [BKK∗19]
NeuTu • • • • neuron reconstruction & visualization Github [ZOYP18]
Paintera • • • neuron segm., reconstr. & proofreading Github [ZOYP18]
WebKnossos • • • • cloud-based 3D annotation Github [BBB∗17]
VikingViewer • • • • terascale annotation Github [AMG∗11]
CatMaid • • • • collaborative annotation Github [SCHT09]
VAST • • • volume annotation & segmentation Executable [BSL18]

PyTC • deep learning-based neuron, synapse and
organelle segmentation

Github [LWLP21]

FlyWire • • crowd sourced proofreading Github [DMM∗22]
Dojo • • semi-automatic collaborative proofreading Github [HHM∗17]
Neuromorph • proximity analysis & center line extraction Github [JBK18]
DotMotif • neuronal motif search Github [MRJ∗21]
NeuPrint • • connectivity exploration & analysis Github [CDU∗20]
Brainrender • data communication Github [CTP∗21]
Neuroglancer • large scale volume visualization Github [MSBS∗21]
NeuVid • video generation Github [Hub22]
SharkViewer • • 3D skeleton viewing Github [WBH14]
NaVis • • Neuron comparison & visualization Github [SBJ∗21]
natverse • • Neuroanatomical data analysis Github [BMJ∗20]
NeuroMorphoVis • • Neuroanatomical data analysis Github [AHE∗18]

and discover the fundamental principles at play in neuron struc-
tures and circuit architectures. Visualization researchers now have
the rare opportunity to develop interactive frameworks that allow
neuroscientists to make sense of these data sets with tens of thou-
sands of cells and hundreds of millions of synapses.

This report presented the state of the art of data visualization for
high-resolution connectomics data. We grouped related work along
the common connectomics pipeline. While most visualization ap-
proaches cluster towards the end of the pipeline, interesting visual-
ization work has also been done in the early parts of the pipeline.
This work intends to summarize the field for both new visualiza-
tion researchers and experts in the area. We also compiled a list
of the latest and most commonly used publicly available data sets
and open-source tools in the field, highlighting the recent push for
open science. Connectomics research, in particular, relies heavily
on sharing data and expertise among research groups. This report
also reflects the interdisciplinarity of the field. Neuroscientists, ma-
chine learning experts, and visualization researchers need to collab-
orate closely. We argue that human-AI collaboration will play an
increasing role in translating the vast amounts of imaging data into

comprehensible knowledge. In turn, we hope that research findings
in connectomics will help incorporate more biologically-inspired
architectures into deep learning models.

We hope this review provides visualization and connectomics
researchers with a better overview of the different visualization
methods currently available for each step along the connectomics
pipeline. However, connectomics is a constantly evolving field with
many open visualization challenges. We hope to inspire future re-
search in this exciting field with our survey. Tackling these chal-
lenges has the potential to bring us one step closer to the ultimate
goal of understanding the workings of the human brain.
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