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Fig. 1: NeuroLines neurite visualization. We abstract the original 3D structure and topology of neurites segmented in nanoscale
brain tissue data into a 2D subway map visualization that preserves topology and relative distances. Left: Volume rendering of a
dendrite (red) and connected axons (blue). Right: NeuroLines abstraction of the same data, represented as subway lines to more
clearly show branches, clusters of adjacent synapses, individual synapses, and the actual connections (shown on demand).

Abstract—We present NeuroLines, a novel visualization technique designed for scalable detailed analysis of neuronal connectivity
at the nanoscale level. The topology of 3D brain tissue data is abstracted into a multi-scale, relative distance-preserving subway
map visualization that allows domain scientists to conduct an interactive analysis of neurons and their connectivity. Nanoscale
connectomics aims at reverse-engineering the wiring of the brain. Reconstructing and analyzing the detailed connectivity of neurons
and neurites (axons, dendrites) will be crucial for understanding the brain and its development and diseases. However, the enormous
scale and complexity of nanoscale neuronal connectivity pose big challenges to existing visualization techniques in terms of scalability.
NeuroLines offers a scalable visualization framework that can interactively render thousands of neurites, and that supports the detailed
analysis of neuronal structures and their connectivity. We describe and analyze the design of NeuroLines based on two real-world
use-cases of our collaborators in developmental neuroscience, and investigate its scalability to large-scale neuronal connectivity data.

Index Terms—Connectomics, Neuroscience, Data Abstraction, Multi-Trees, Focus+Context.
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1 INTRODUCTION

Neuroscientists in the field of connectomics seek to reconstruct the full
anatomical and functional connectivity of the brain at the resolution
of individual connections (synapses) between nerve cells (neurons).
Determining—and ultimately decoding—this wiring diagram, called
the connectome, is one of the main scientific endeavors of the 21st
century and will allow scientists to better understand how the brain
develops and functions, and how memories are formed and recalled.
However, even a single cubic millimeter of a mouse brain already con-
sists of around 100,000 neurons and 700 million synapses, making
brain connectivity exceptionally difficult to analyze and understand.
Only recent advances in connectomics have made it possible to ac-
quire data at the speed and quality necessary to be able to reconstruct
the brain’s connectivity at the level of individual synapses. Until now,
most of the effort has focused on developing novel methods for high-
throughput and high-resolution image acquisition [30], data registra-
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tion [12], segmentation [21, 24], synapse identification, and the recon-
struction of connectivity [9, 43]. The next logical step—the detailed
analysis of reconstructed neurons, using knowledge of their morphol-
ogy and structure as well as connectivity—is still a cumbersome, and
mostly manual, process. This is further complicated by a lack of suf-
ficiently powerful visualization and analysis tools, and by the inher-
ent complexity and huge scale of connectomics data. Most previous
methods for visualization and analysis in connectomics focus either on
visualizing a completely abstract connectivity graph, or on rendering
the raw electron microscopy (EM) data. A common problem for visu-
alization is the complex structure of EM data. For example, a single
neuron in the mouse cortex makes up to ten thousand synapses with
other neurons, which easily leads to cluttered visualizations. Further-
more, in order to gain insight, the synaptic connectivity between neu-
ral structures and the anatomical information present in the raw data
should be linked together, to enable scientists to jointly analyze these
two aspects and their relationship. Therefore, it is necessary to design
and develop new scalable visualization and analysis techniques that
enable scientists to efficiently form and investigate new hypotheses
about the interplay between neuron form, connectivity, and function.

In this paper, we present NeuroLines, a novel multi-scale visual-
ization technique to analyze neurites (i.e., axons and dendrites, which
are structural sub-parts of neurons), and their connections. We use the
underlying anatomical tree structure of neurites to create an intuitive
visualization. Therefore, our first contribution is an abstraction for vi-
sualizing neurites in an uncluttered 2D representation. Each neurite
is represented as a tree structure based on its real, but adaptively sim-
plified, anatomy, and its branches. The goal of our visualization is to
present neurites in an uncluttered fashion, while still preserving the
topological structure and connectivity information. Fig. 1 shows the



original 3D structure of a dendrite with several connected axons, and
the corresponding representation in NeuroLines. Our second contri-
bution is a multi-scale visualization and navigation scheme that makes
our approach scalable to thousands of neurites by automatically com-
puting the correct level of abstraction for the current view. Users can
zoom in on regions while still maintaining a contextual overview of
nearby neurites. Our third contribution is the NeuroLines application,
based on the topology-preserving visual abstraction of neurites to sup-
port the analysis of neurite connectivity. It is integrated into Con-
nectomeExplorer [5], a visualization and visual analysis framework
for petascale connectomics data. Finally, our fourth contribution is a
demonstration of the utility of NeuroLines, based on two case studies
performed by domain experts on real-world connectomics data.

2 RELATED WORK

Connectomics. There are several excellent introductions to the main
research challenges in connectomics [30, 40]. In computer science,
connectomics has stimulated a lot of research in image processing,
vision, and visualization. Most software for connectomics focuses
on manual annotation [2, 19, 38] and (semi-)automatic segmenta-
tion [1, 21, 24] of neuronal structures as well as proof-reading auto-
matic segmentation results [18, 37]. However, all of these approaches
do not support advanced exploration or visual analysis of features.
Visualization for connectomics. There are two main categories for
visualization in connectomics: (1) displaying the original large-scale
microscopy data, and (2) visualizing higher-level connectivity infor-
mation [36]. Margulies et al. [32] give an overview of different frame-
works for visualizing the human connectome. Hadwiger et al. [17]
present a system for volume exploration of petavoxel EM data, which
was later extended to handle segmented neurites [6]. Several appli-
cations have proposed interactive or visual queries to explore these
typically very large data sets [10, 31, 41]. None of them, however,
focus on exploring the connectivity between neurites at the level of
individual synapses. More recently, we have presented Connectome-
Explorer [5], which supports fully dynamic visual queries, volume vi-
sualization of EM and segmentation data, as well as labeled meta-data
such as synapse locations. However, in contrast to NeuroLines, Con-
nectomeExplorer does not focus on detailed neural connectivity analy-
sis and does not offer visual abstractions of neurites and their synapses.
Neuronal connectivity visualization. The analysis and visualization
of the intricate connectivity of brain networks typically focuses on
either the regional or the cell level. On the regional level, Irimia et
al. [20] use connectograms or radial network layouts to show the con-
nectivity between regions in the human cortex. Jianu et al. [22] project
3D tractography data of white matter fibers onto 2D planes to produce
2D neural maps of fiber tracts. Li et al. [29] propose a toolkit for visual
analysis of brain networks based on DTI data. Connected brain regions
are displayed in a 3D graph structure based on the region’s spatial loca-
tion in the brain. Similarly, the Connectome Viewer Toolkit [15] sup-
ports the analysis of macroscopic neuronal structures and brain region
connectivity. All of these techniques focus on the high-level connec-
tivity of entire brain regions and do not operate on the level of individ-
ual synapses, which is required for nanoscale connectomics. On a cell
level, the Viking Viewer [2] displays an abstract connectivity graph,
representing each neuron as a single node. ConnectomeExplorer [5]
also displays connectivity information in an abstract graph, with one
node representing a single neurite. More recently, neuroMap [43] has
employed circuit wiring diagrams to represent all possible connections
of neurons. All of these methods display neuron connectivity as an ab-
stract network or graph. While this simplifies the visual representation,
it also removes the inherent anatomical and topological information of
neurites, such as their branches, branch positions, or synapse distribu-
tion, and does not support the analysis of individual synapses.

Trees and multi-trees. Neurons and neurites can be represented as
topological trees. Consequently, a collection of neurites can be thought
of as multi-trees or a forest. Synapses between these neurites result
in trees that are connected on a synaptic level. A good introduction
to trees is given in surveys on visualization of trees [39] and multi-
trees [16]. Fitch and Margoliash [14] construct phylogenetic trees
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Fig. 2: Neuron and synapse structure. Neurons receive input through
dendprites, and transmit signals over their axon and the synapses that it
makes with other neurons’ dendrites. Vesicles carry neurotransmitters
on the pre-synaptic side, at so-called axon terminals (boutons).

that highlight the mutation distance between two nodes. TreeJuxta-
poser [34] focuses on the structural comparison of large trees. It uses
a similarity measure to compute the best corresponding nodes between
trees and guarantees the visibility of these nodes on screen. Bremm et
al. [8] compare multiple phylogenetic trees based on global as well
as local tree structure. Tree comparison approaches are very useful to
highlight differences between individual trees. Our primary focus in
NeuroLines, however, is the analysis of how individual trees (i.e., neu-
rites) are connected to each other, and to identify appropriate attributes
that can be used for automatic neurite comparison in the future. EVE-
Vis [33] visualizes large evolutionary tree data. It uses a multi-scale
method that transitions from a high-level stack graph visualization to
a node-link tree layout for showing individual cells. In the medical
field, tree structures often have a direct spatial correspondence. CPR
(curved planar reformation) [23] allows tubular structures such as ves-
sels to be displayed in a 2D visualization with minimal loss of infor-
mation. More recently, Borkin et al. [7] proposed a 2D visualization of
artery trees for the diagnosis of heart disease. Both methods focus on
anatomical structures represented as a single tree, and therefore do not
have to deal with multi-trees and connected multi-trees. The metro
map metaphor, originally used to show transit lines and connecting
stops, can also be used to visualize networks and abstract graphs. Ex-
amples include project plans [44] or visualizing trains of thought [35].
Multi-scale navigation. Hierarchical navigation metaphors and
focus-and-context techniques [42] are very useful for exploring a large
number of entities or data points. NeuroLines uses the “search, show
context, expand on demand” metaphor for exploring large graphs [46],
and additionally employs a multi-tier focus-and-context visualization
to navigate neurites at different levels of abstraction and also allows
multi-criteria sorting. Multi-tier focus-and-context techniques have
also been used for visualizing large heat maps of genomics data [28].
Telea [45] uses extended table lenses and treemaps to display large tab-
ular data. The system supports multi-column sorting and visually en-
hances the sorting result to allow easily distinguishing different clus-
ters when the number of sorted elements is high.

3 BIOLOGICAL BACKGROUND

This section introduces the biological background and terminology,
and the data acquisition and processing workflow of our collaborators.

3.1 Neuroscience Terminology

The mammalian brain consists of hundreds of billions of intercon-
nected nerve cells—the neurons. Each neuron processes and transmits
information, mostly as electrical signals, by forming synaptic connec-
tions with other neurons. A single neuron typically consists of a cell
body, several dendrites, and one axon (see Fig. 2). A dendrite is a tree-
like branching structure that receives signals from neighboring cells,
while an axon is a long and narrow tubular structure that transmits
signals away from the cell body towards other neurons. Axons and
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Fig. 3: Data processing workflow. After slicing and imaging a block of brain tissue, registration, segmentation, and synapse labeling are
performed. The segmented neurites are then skeletonized, forming the basis for subsequent interactive visualization and analysis in NeuroLines.

dendrites are collectively called neurites. A synapse consists of a pre-
synaptic terminal (a bouton) on the side of the axon that releases neu-
rotransmitters when activated, a post-synaptic terminal at the side of
the dendrite, and the synaptic cleft between dendrite and axon.

A synapse can either be excitatory or inhibitory, depending on
whether a spike on the axon increases or decreases the chance of pro-
voking a spike in the receiving dendrite. Synapses have further dis-
criminating features, such as the position of the post-synaptic termi-
nal (i.e., either on a dendrite’s shaft or on a small extension called a
dendritic spine), or the number of vesicles (cell organelles containing
neurotransmitters) in the bouton. However, little is known about what
influences or causes the variability of these attributes, and how they
impact the function of a neuronal network. Scientists are interested
in trends and correlations, and in looking at individual neuronal struc-
tures, their synapses, and attributes. For example, they want to look at
detailed synapse characteristics to find patterns depending on specific
axon/dendrite constellations: If an axon makes several connections to
the same dendrite, do all their shared synapses look the same? Do
synaptic pathways follow certain excitatory/inhbitory patterns?

3.2 Neuroscience Workflow

The data acquisition and processing workflow of our collaborators
consists of several steps (see Fig. 3): Starting with a solidified block of
brain tissue (a tiny sample of a mouse or rat brain), they use an ultra-
microtome to cut it into slices of 25-30 nm thickness, which are then
scanned with a scanning electron microscope (SEM) to capture image
tiles with a pixel resolution of 3-5 nm. Next, the individual tiles are
stitched and registered to form a single 3D volume with slice resolu-
tions of 20,000 to 100,000 pixels, and thousands to tens of thousands
of slices. In the next step, our collaborators segment and label this
3D volume, using both manual and automatic segmentation tools [24].
Mojo [25] and Dojo [18] are used for proof-reading automatically gen-
erated segmentations. All additional data, such as the locations and
properties of synapses, are currently annotated manually and stored as
meta data. The necessary processing steps for importing these initial
data into NeuroLines for further analysis are explained in Sec. 8.1.1.

Currently our collaborators use several different tools for data anal-
ysis. To support their workflow, we have integrated NeuroLines as a
plug-in into ConnectomeExplorer [5], which is a system for visualiza-
tion and visual analysis of large-scale neuroscience data that supports
interactive visual queries to dynamically explore data. It supports 3D
volume rendering, and offers an abstract node-link diagram to depict
neurite connectivity. For detailed statistical analysis of regions of in-
terest in the volume, our collaborators mainly use Matlab.

4 NEUROLINES DESIGN

The main idea of our design is to abstract the complex branching
and connectivity pattern of neurites into a simplified representation
inspired by 2D subway maps. We transform the problem from 3D into

2D to reduce visual clutter, while preserving branching patterns and
relative synapse locations, and to facilitate following synaptic chains.
Fig. 5 shows an overview of the NeuroLines system.

4.1 Design Considerations

The idea of NeuroLines originated in initial meetings with our collab-
orators where they voiced their dissatisfaction with the lack of neu-
rite visualization approaches that focus on connectivity instead of on
a complete 3D reconstruction of the segmented structures. Our first
prototype depicted neurite connectivity as an abstract 2D node-link di-
agram (Fig. 4 (c)). It was included in the ConnectomeExplorer frame-
work [5]. This view allowed our collaborators for the first time to see
the connectivity of their data. However, this approach loses spatial
relations and knowledge of the branching morphology. Next, our col-
laborators wanted a combined visualization of the original 3D data and
a simplified 3D graph structure, which they called a “3D subway map.”
However, after several iterations of such a design (Fig. 4 (b,d)), it be-
came clear that a 3D approach does not scale to the expected data sizes,
and that it leads to nonintuitive and cluttered visualizations, ultimately
motivating a novel 2D representation. This 2D abstraction simplifies
the original 3D structure and removes anatomical details. However, it
retains the most important features for subsequent analysis: topologi-
cal structure, connectivity information, and synapse sequence along a
neurite. Additionally, we always allow users to go back to the original
3D volume view from any point in the 2D representation.
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Fig. 4: NeuroLines design prototypes. a) 3D volume rendering of a
cylindrical region of interest of the segmented data; b) First visualiza-
tion approach in 3D for directly displaying neurite skeletons; c) Ab-
stract 2D graph visualization showing the connectivity between neu-
rites, without spatial information; d) First 3D subway map prototype.
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Fig. 5: NeuroLines overview. We visualize neurites using a multi-scale approach with three tiers of linked views (a,b,c), which provide overview
as well as details. The navigation bar (a) shows individual neurites as lines color-coded according to selected neurite attributes and sorting
criteria. The neurite overview (b) allows inspecting all neurites at a medium level of abstraction. The workspace view (c) allows the inspection
of neurites at a detailed level of abstraction. The neurite analysis (d) shows statistics for a selected neurite. Pinning (e) a neurite to the workspace
allows keeping a specific neurite in focus while exploring others. The synapse analysis (f) shows synapse details and its neighborhood in the
original EM volume. (g) NeuroLines is also coupled with a 3D volume renderer for additional visualization and exploration in 3D.

4.2 Task Analysis

This section discusses our overall domain goals and present the cor-
responding detailed task analysis. These analyses have guided most
design aspects of NeuroLines.
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The main objective of our collaborators is to quickly form, test, and
accept or reject new hypotheses regarding neuron connectivity. This
includes discovering patterns, exploring a region of interest or subset
of the data, and to quickly identify segmentation or labeling errors.
NeuroLines supports the overall goals of neuroscientists to (a) explore
and identify patterns in synaptic connections; (b) explore and identify
patterns in branching structures; and (c¢) explore synaptic pathways.
An example of (a) is the analysis of multiple-hit axons and the dis-
tribution of their synapse locations on the post-synaptic dendrite. Sci-
entists want to explore the connectivity pattern of where a single axon
connects to the same dendrite multiple times, and see the locations of
these synapses on the dendrite—and in relation to other synapses of
the dendrite. An example of (b) is the analysis of dendritic synapse
strength with respect to their distance from the cell body. Synapses
further away from the cell body are assumed to be bigger, so that the
signal they send towards the cell body is stronger. Our collaborators
also want to analyze the effect of branching on synapse strength. An
example of (c) is the identification of recurring connectivity motifs.
Our collaborators look for certain recurring connectivity patterns in
the data, such as “inhibitory neuron — excitatory neuron — excitatory
neuron — inhibitory neuron”. In order to do this, they have to follow
synaptic pathways and identify neurons as excitatory or inhibitory.

Domain Goals

4.2.2 Domain-Driven Tasks

We now map our high-level domain goals to analysis tasks that need
to be supported by NeuroLines. We identified these tasks over sev-
eral months of meetings with our domain scientists through semi-
structured interviews and informal feedback sessions. Initial meetings
were held in bigger groups of several neuroscientists and scientific
staff, while detailed discussions were done with individual scientists.
We have identified the following main tasks:

T1-Selecting a neurite subset. In addition to a typical “overview
first, details on demand” visual exploration scenario, our collaborators
want the possibility to start their exploratory process with a specific

subset of the data. For example, it is interesting to consider only neu-
rites inside a specific spatial region of interest, or start with only exci-
tatory axons that were sorted according to their number of synapses.

T2-Single-neurite analysis. Typically, after selecting a structure
of interest, i.e., a neurite, it is explored in more detail before continuing
with further analysis of connected or nearby structures. This detailed
analysis includes examining the neurite’s attributes such as branching
complexity and length, as well as synapse distribution and statistics
over all synapses of a neurite.

T3-Multi-neurite analysis. When analyzing neurites, it is impor-
tant to be able to determine relationships with other neurites. Looking
at different neurites concurrently and in the same view allows users to
quickly extract patterns like branching structure, connectivity, function
or length, and to compare individual neurites to each other.

T4-Synapse analysis. Synapses are the basic elements that create
neuronal connections and pathways. Before analyzing the connectivity
on a larger scale, individual synapses have to be analyzed and classi-
fied. For example, the combination of different synapse attributes is
correlated with the strength of a synapse. It is crucial for the scien-
tists to be able to examine individual synapse attributes, to look at the
original synapse location, and to navigate to this location in a 3D view.

T5-Connectivity analysis. Following synaptic connections from
one neurite to another is crucial for further understanding of the under-
lying data. For example, being able to explore a specific axon and all
its connections to a specific dendrite allows analyzing multiple-hit ax-
ons and extracting related properties, such as the synapse distribution
along a neurite, or the strength of synapses on all first-level branches
(i.e., the branches directly off of the trunk of the neurite).

The mapping of domain goals to tasks is as follows: exploring
synaptic connections (a) is supported by tasks T1, T4, and TS; ex-
ploring branching structures (b) is supported by T1, T2, and T3; and
exploring synaptic pathways (c) is supported by T1, T3, T4, T5.

4.3 Scalability Challenges

Our collaborators are constantly working on increasing the size (i.e.,
the physical extent as well as the resolution) of their data. Therefore,
one of our main design goals was to develop a scalable visualization
that enables hierarchical navigation through a large set of neurites. To
test the scalability of our system, we have implemented a parameter-
ized neuron simulator (Sec. 8.1.2) that allows us to create synthetic
data for stress testing each of the following scalability challenges:



S1-Many neurons. The current data set our collaborators have
scanned is too “small” in physical extent to figure out neuron/neurite
relationships (i.e., which neuron a specific neurite belongs to). The
high resolution of EM results in teravoxel datasets for a tissue block
of only several cubic micrometers. Axons, however, can extend over a
distance of milli- and centimeters. With the rapidly increasing amount
of scanned data, however, we will have access to hundreds if not thou-
sands of segmented neurons over the next few years.

S2-Many neurites. As the number of segmented neurons in-
creases, the number of neurites will increase even more (by 1-100x).
It will become difficult to navigate through large lists of neurites, and
find structures of interest while still seeing their immediate context.

S3-Many branches. A neurite can consist of dozens to hundreds
of branches, resulting in very big individual neurites with a potentially
confusing branching structure.

S4-Many synapses. A neurite can have hundreds of labeled
synapses, producing a lot of clutter if not reduced by the visualization.

S5-Many connections between neurites. As the number of la-
beled synapses increases, showing visual links between all connected
neurites becomes infeasible. Moreover, since a neurite can have hun-
dreds of synapses, they might connect to neurites that are currently
outside the subset of the data that is visible on screen.

5 VISUAL ELEMENTS

This section gives a high-level overview of the major visual elements
of NeuroLines, from the main view comprising a multi-scale view with
three different tiers (Fig. 5 (a,b,c)), to the different abstraction levels
of neurites (Fig. 6). We use neurites as our main visual representation
instead of neurons because (a) this is the level of detail for connectivity
analysis (i.e., axons connect to dendrites), and (b) currently many of
the neuron-neurite relationships are still unknown in our data.

5.1 Multi-Scale, Three-Tier Main View

Fig. 5 depicts the main view of NeuroLines, which consists of a multi-
scale, three-tier focus-and-context neurite visualization. It comprises
the following three tiers, which are arranged from left to right:

1. The navigation bar for a high-level overview of the neurite work-
ing set, and for dynamic sorting and navigation.

2. The neurite overview to get an overview of a subset of neurites,
and for inspecting high-level neurite information.

3. The workspace view for inspecting individual neurites, branch-
ing patterns, synapses, and synaptic chains in detail.

These views allow simultaneously navigating the data at different ab-
straction levels, from overview to detail. Using a three-tier focus-and-
context scheme enables the exploration and analysis of multiple neu-
rites at the same time, at different scales (T3—multi-neurite analysis,
S2-scalable to many neurites).

The zoom levels in all views are set automatically, but can be ad-
justed dynamically by the user. Changing the zoom level adjusts all
contained elements, and updates the amount of branch collapsing,
synapse clustering, and text overlays accordingly. All three views are
linked by sliding focus windows that allow drilling down into the data
from left to right (Fig. 5 (a,b,c)).

We use the concept of a working set to denote the current total set of
neurons and neurites that are of interest to the user. The initial working
set is the entire data set, but the embedded visual query language [5]
can be used to dynamically restrict the working set to the objects re-
sulting from an interactive query. In this way, NeuroLines supports the
“search, show context, expand on demand” interaction metaphor [46].

5.1.1

This view (Fig. 5 (a)) represents neurites as horizontal, color-coded
lines. Users can navigate all neurites vertically, visually identify pat-
terns, and navigate and drill down into areas of interest.

The design and color-coding of this view is inspired by heatmaps
where neurites are color-coded either according to user-chosen neurite
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Fig. 6: Neurite abstraction. We employ different abstraction levels
to visualize neurites at different levels of detail. (a) Medium-level ab-
straction showing an overview with collapsed branches. (b) Detailed
view (low-level abstraction) with individual synapses shown as dia-
monds (spinal) or circles (non-spinal). (c) Synapses overlapping in
screen space are automatically clustered. Clusters show the number
of contained synapses and can be fanned out to show them in sequence.

attributes (e.g., function, number of synapses), or by the color that was
used for the initial segmentation in the EM volume (Fig. 7). For auto-
matic color-coding, we use sequential and qualitative color schemes.
The colors that were chosen manually by the scientists during segmen-
tation are arbitrary. However, the scientists often identify individual
structures via certain colors, and therefore want to be able to use the
same colors in NeuroLines. The navigation bar supports multi-criteria
sorting of neurites, which is explained in more detail in Sec. 6.1.

5.1.2 Neurite Overview

This view (Fig. 5 (b)) depicts neurites at a medium level of detail in
order to give an overview of neurites, i.e., it shows neurites without
the full detail of their branches or individual synapses. Each neurite in
this view is shown with its textual name. Additionally, neurites can be
selected to see summary statistics of their attributes (Fig. 8), which is
explained in Sec. 7.1.

5.1.3 Workspace View

This view (Fig. 5 (c)) acts as the main workspace in NeuroLines, for
detailed analysis of neurites, their branching patterns, synapses and
connections, and for comparing multiple neurites.

Each neurite is represented as a horizontal tree that depicts the neu-
rite’s complete branching structure and all of its synapses, depending
on the zoom level. The view can be zoomed and panned both verti-
cally and horizontally. By default, each neurite is scaled horizontally
such that it fills up the available space, while preserving the relative
distances of branches and synapses within the neurite. When zooming
out, the neurite tree visualization is gradually simplified by collapsing
branches and merging individual synapses into synapse clusters based
on the current resolution level and zoom factor.

5.1.4 On-Demand Electron Microscopy Views

A main requirement of our collaborators is that they want to be able
to go back to the original 3D data to explore the detailed anatomy of
the area around a synapse. Therefore, we have integrated on-demand
2D and 3D volume views of the original and segmented EM data that
can be activated by clicking on a synapse (Fig. 5 (f,g)). We display a
small z-aligned 2D slice view that is centered at the x,y,z location of
the synapse in the original EM volume showing the immediate synapse
neighborhood (T4-single synapse analysis). Furthermore, we can au-
tomatically navigate to the synapse in a 3D volume rendering view that
shows the synapse and the segmented axon and dendrite it connects,
and interactively explore the entire EM volume in the 3D view.

5.2 Neurite Abstraction Levels

To support exploration and analysis at different levels of detail, Neuro-
Lines employs neurite visualizations with different abstraction levels.
The highest abstraction level is used in the navigation bar, where each
neurite is represented as a single horizontal, color-coded line. Fig. 6
shows the medium and low-level abstraction levels that we provide.



The medium-level neurite abstraction shows an overview of the
neurite in which all but the most prominent branches are collapsed.
This abstraction is used for visualizing neurites in the neurite overview
(Fig. 5 (b)). Additionally, a neurite can be augmented by statistical in-
formation about its synapses (Fig. 5 (d)).

The low-level abstraction of a neurite retains most details and is
used for visualizing neurites in the workspace view (Fig. 5 (c)). The
specific amount of detail shown depends on the used zoom level.

5.2.1

To draw an abstracted neurite, we map its 3D skeleton structure to
a simplified, but topologically correct, 2D representation inspired by
subway maps. We preserve all relative distance relations within a neu-
rite (i.e., distances between synapses/branches, lengths of branches),
but straighten branches to obtain a visualization with clear and straight
lines (T2-single neurite analysis). We offset branches at right angles,
allowing a direct comparison of horizontal positions between paral-
lel branches and synapses. Neurites are scaled horizontally to either
maximize use of available screen space, or scaled in relation to a se-
lected neurite (Fig. 3, right). We use relative instead of absolute scal-
ing because individual neurites can differ in length by several orders
of magnitude. This makes an absolute scale useless in most cases.

Branching. We use a greedy approach to draw the branching struc-
ture of neurites: After drawing the trunk, we iteratively add branches
from right to left, aiming for a compact visual representation. We
avoid screen space intersections of different branches by alternating
the vertical position at which branches are added (either at the top or at
the bottom). If this does not resolve conflicts, we increase the distance
of branches from the trunk. The current branching level is visually
encoded via thickness and vertical distance to neighboring branches.

To prevent neurites with many branches from dominating screen
space, we automatically collapse branches vertically if the height of a
neurite exceeds the allowed maximum height for the current resolution
level and zoom factor (S3—scalable to many branches). More specif-
ically, the allowed maximum vertical distance between branches is
set differently for each resolution level (i.e., overview and workspace
view) and is automatically decreased for each additional branching
level. If we detect that a branch would exceed the allowed vertical
distance, it is automatically collapsed starting with its sub-branches.

Synapses. Synapses are not part of the initial neurite segmenta-
tion skeleton. Therefore, we project their labeled 3D position onto
the corresponding skeleton element and display them as small nodes
on the neurites. This implies that each synapse is displayed twice:
once on the axon, and once on the dendrite. We encode the post-
synaptic morphology by displaying spinal synapses as diamonds and
non-spinal synapses on a dendrite’s shaft as circles. For scalability to
a large number of synapses (S4—scalable to many synapses) we use
mean-shift clustering to group synapses that overlap in screen space
into clusters and display each cluster as a single node, displaying the
number of contained synapses. Clustering is based on the horizontal
position of synapses and is done for each branch separately. Synapses
retain their spatial order inside a cluster and can be explored individu-
ally by fanning out the cluster’s elements upon selection.

Synapse links. To reduce the amount of visual clutter, we draw
visual links (i.e., synaptic connections) between neurites only on-
demand, when hovering over a synapse (S5-scalable to many connec-
tions between neurites). Displaying stubs instead of lines [27] would
be a viable alternative to reduce clutter while still indicating connec-
tions. However, in our case a synapse node on a neurite already in-
dicates the presence of a connection. In addition to showing the vi-
sual link of the selected (i.e., hovered) synapse, we also highlight all
synapses between the same two structures. This allows the user to
quickly identify not only the number of shared connections between
two structures, but also to examine each synapse in more detail.

Computing Abstracted Neurites

6 INTERACTION

In this section we focus on the interaction features of NeuroLines.
The overview in Fig. 5 depicts many of the interaction possibilities
that we provide, including multi-criteria sorting (a), the concept of a
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Fig. 7: Neurite sorting and high-level navigation. The current sort-
ing of neurites is depicted in the navigation bar by color-coding the
sorting criteria according to neurite attributes. (a) Multi-critera sort-
ing order from left to right: neuron id, function (excitatory/inhibitory),
type (axon/dendrite), no. synapses, assigned neurite color. (b,c) Multi-
critera sorting and color map (left to right: neuron id, type, function).
(d) Tool tip for a single neurite showing its attributes. (e) Neurites can
also be color-coded with a single attribute (no. synapses) regardless
of the sorting criteria. (f) The navigation bar also displays a slidable
focus window, which is linked to the neurite overview for navigation.

workspace (c), pinning neurites of interest (e), selection of individual
synapses (e,f), and joint 2D/3D data exploration (f,g).

6.1 Sorting and Filtering

To deal with a large set of neurons and neurites (S1, S2—scalable to
many neurons and neurites), we support filtering and sorting opera-
tions to dynamically find and define subsets of the data.

Filtering. For powerful filtering operations, we use the concept of
aworking set, which is determined using the integrated dynamic query
language [5]. By default, the working set is the entire data set. How-
ever, dynamic queries allow the user the on-the-fly specification of a
set of objects of interest, such as a specific set of neurites or synapses,
that should be analyzed together. This helps narrowing down the anal-
ysis to the subset of the data that is needed for a specific analysis task
(T1-select neurite subset). For example, to examine a specific den-
drite, our collaborators specify queries to extract this dendrite, all its
connected axons, and all dendrites that connect to these axons. This
significantly reduces the amount of data that needs to be displayed.

Multi-criteria sorting. The working set can be sorted according
to multiple criteria or user-specified categorical and quantitative at-
tributes (e.g., neurite function, number of synapses), to facilitate the
discovery of high-level patterns in the data. The current sorting is dis-
played in the navigation bar and uses a heatmap approach to display
all sorting criteria in a condensed form where each sorting attribute
is shown as its own vertical column (Fig. 7). The individual columns
are arranged from left to right depending on their sorting sequence,
with left being the first sorting attribute. Sorting attributes and their
sequence can be defined in a GUI widget which also shows the color
map for each attribute. Furthermore, we allow hovering over individ-
ual entries in the navigation bar to inspect their values in more detail.

6.2 Workspace, Pinning, and Pivoting

To allow users to track their progress and to compare neurites, we use
the concept of a workspace, where neurites can be saved and stored
even when the user goes on to explore different parts of the data set
(T3—multi-neurite analysis, S2—scalable to many neurites).

Pinning. By pinning a neurite to the workspace (Fig. 5 (e)), it is
guaranteed that it stays visible even when the remainder of the view
changes, thereby allowing comparisons between different neurites.

Pivoting. By selecting individual neurites in the workspace, we
can sort and scale neurites based on this item (i.e., pivot element), and
easily explore a neurite’s neighbors (TS5—connectivity analysis). We
support re-ordering the neurites depending on features such as con-
nectivity strength, where neurites with many synapses to the selected
neurite are arranged more closely than neurites with fewer synapses.
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Fig. 8: Neurite overview and analysis. This view combines a medium-
level abstraction of a neurite with detailed statistics over all of the
neurite’s synapses, e.g., percentage of spinal vs. non-spinal synapses.

Scaling to pivot. In the same manner, we can scale the length of
neurites (the horizontal axis) according to the length of the pivot ele-
ment, to better compare the size, branching pattern, and synapse loca-
tions between multiple neurites (T3—multi-neurite analysis).

6.3 Connectivity Exploration

One of the main goals of NeuroLines is connectivity exploration and
the discovery of connectivity patterns. Ultimately, our collaborators
want to identify connectivity motifs in their data (e.g., neuronal feed-
back loops). NeuroLines supports this task by allowing scientists to
quickly explore the connectivity between neurites manually, but in the
future we also want to integrate (semi-)automatic motif detection.

Once the user hovers over a synapse, it is displayed as a visual
link (i.e., connecting line) between the respective synapse locations
on both the axon and the dendrite. In addition to highlighting the
currently selected synapse and its connecting line, all other synapses
between the same two neurites are displayed as visual links for con-
textual information (Fig. 10 (c)). This allows users to quickly see how
many synapses are shared between two neurites and to follow synaptic
chains throughout the dataset. Connected structures outside the cur-
rent viewing window can be fetched and moved next to the originating
neurite in a smooth animation. This keeps the current synapse in fo-
cus, but allows the user to explore the connected structure at the same
time (T5—connectivity analysis, S2, S5—scalable to many neurites and
many connections between neurites) . Optionally, the viewport can be
moved to the neurite in question in a smooth transition.

7 ANALYsIS TooLs

This section focuses on the analysis features of NeuroLines that sup-
port scientists in exploring and validating their hypotheses.

7.1 Neurite Analysis

The neurite analysis view depicts detailed statistics over all of the neu-
rite’s synapses in an easy to read color-coded stack chart (Fig. 8).
This view is integrated into the neurite overview and shown only on-
demand for the currently selected neurite in the workspace, as depicted
in Fig. 5 (d). This view allows scientists to see the most important
statistics of a neurite at a single glance, allowing them to quickly iden-
tify trends and patterns. For example, if the function of a neurite
(i.e., excitatory or inhibitory) is unknown, scientists can try to infer
the function based on the percentage of spinal synapses.

7.2 Synapse Analysis

To inspect individual synapses in detail, NeuroLines offers a synapse
analysis view that is displayed on-demand. This is triggered by click-
ing on a synapse in the workspace view. This view displays all at-
tributes of the synapse, including information about the pre-synaptic
bouton and the post-synaptic terminal. Additionally, it offers a 2D
slice view and a linked 3D volume view centered around the synapse,
which are shown in Figs. 5 (f,g). This allows scientists to confirm
synapse attributes and look for additional distinguishing features. The
case study in Sec. 9.1 is one example of how synapse analysis can help
answer domain-specific questions.

8 IMPLEMENTATION AND EVALUATION

NeuroLines is implemented as a plug-in in the ConnectomeExplorer
framework. It is written in C++ and OpenGL, and uses Qt for basic
GUI and window elements. The application runs on a standard Win-
dows PC and requires a recent NVIDIA GPU (Kepler architecture or
better) to run the 3D volume renderer. The neuron generator for syn-
thesizing data is implemented in Python.

8.1 Data

In this section, we describe the real-world domain data our scientists
have acquired and discuss our neuron generator for simulating large
neuronal networks that can be displayed in NeuroLines.

8.1.1

The data our domain scientists want to analyze and that serves as input
to our system consists of a collection of segmented and annotated elec-
tron microscopy slices of brain tissue (e.g., the mouse cortex), forming
a single large 3D volume. Currently, synapses are labeled manually by
the neuroscientists, but in the future synapses will be labeled automat-
ically. In a pre-process, we extract curve skeletons of the segmented
neurites using 3D medial axis thinning [26] before converting the ex-
tracted skeletons into a forest of trees, each tree representing a single
neurite. Additionally, in this step we also deal with incomplete or in-
correct data, such as wrong segmentations and labeling. An example
of this are “island segmentations,” where a segmented structure with
the same ID has several unconnected components, which is biolog-
ically not possible. However, due to manual segmentation errors or
incorrect automatic segmentation these cases can happen, and there-
fore we represent them as unconnected branches of the same tree.

In the final pre-processing step we add the labeled synapses to the
skeletons by finding the two corresponding skeletons (i.e., the axon
and the dendrite) and inserting the synapse by orthogonally project-
ing the synapse location onto to the nearest skeleton element. Then
we store the generated skeletons as an XML file. When starting up
NeuroLines, we therefore are able to load the original EM and seg-
mentation data with the extracted skeletons and connectivity data.

Real-World Domain Data

8.1.2 Synthesized Data for Scalability Analysis

After discussions with our domain experts we decided that in order
to support future, much larger data, we wanted to be able to evaluate
the scalability of NeuroLines by using simulated data. Therefore, over
the course of several weeks and in close collaboration with our scien-
tists, we developed a simple parameterized neuron simulator that uses
domain knowledge to create neuron skeleton structures and synapses.
Macro structure: neurons and neuron connectivity. Generat-
ing neurons is triggered by specifying the mean number of neurons
to be created, using a normal distribution to account for variability be-
tween different brains. The neuronal network is generated based on the
Watts-Strogatz model [47] to create a small-world graph that exhibits
local clustering and the formation of hubs, which has been shown to
be useful for simulating biological neural networks [4, 11]. Next, we
convert the resulting undirected graph into a directed graph by replac-
ing undirected edges with directed edges in a stochastic approach that
incorporates our collaborators’ knowledge of neuronal connectivity.
Micro structure: neurites and branching patterns. The num-
ber of axons and dendrites per neuron as well as the neuron’s function
is guided by a stochastic process with underlying domain knowledge.
Usually a neuron contains one axon (disregarding segmentation errors)
and several dendrites, depending on the neuron’s function and type.
The individual neurite’s branching pattern is generated by a context-
sensitive, stochastic L-system, that is parameterized based on feedback
from the neuroscientists and knowledge of different branching patterns
in different neurites (e.g, excitatory axons are longer but exhibit less
branching than inhibitory axons). Other systems have already success-
fully used L-systems to simulate artificial neural structures [3, 13].
Connectivity: Synapse generation. Synapses are generated based
on several factors, most importantly neuron function, the number of
simulated connected neurons, the size and branching pattern of the
current neurite, and a user-set parameter to specify synapse density.
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Fig. 9: Performance and scalability evaluation. We have measured
frame rates for different data sets and different kinds of user interac-
tions. Data sets 1-4 were generated for testing our system against
the scalability challenges (DS1: S1,S2-many neurons, many neu-
rites; DS2: S5-many connections between neurites; DS3: S3—many
branches; DS4: S4—many synapses per neurite). Frame rates are for
user idle, workspace interaction (inter.), horizontal scaling (horiz. S.),
stress horizontal scaling test (SHST), multi-tier navigation (nav.), and
stress navigation test (SNT). Standard interaction is always interac-
tive (28-140 fps). During multi-tier navigation, frame rates are lower
(17-110 fps) due to the dynamic layout computation and synapse clus-
tering. However, even during very fast multi-tier navigation (SNT)
frame rates are still interactive (5-107 fps).

8.2 Scalability Evaluation

We have evaluated the scalability of our system by using synthetic data
with different numbers of generated neurons, neurites, branches, and
synapses. Generating a data set with thousands of neurites takes sev-
eral seconds. The rendering of NeuroLines remains interactive, even
with more than 50,000 neurites, because we only draw elements inside
the viewing window. The high-level navigation bar uses a mipmap-
based approach for rendering, reducing the resolution of the data be-
fore drawing, when necessary. Detailed frame rates are displayed in
Fig. 9. Feedback from the scientists tells us that this number is suffi-
cient, because for larger data they will always filter the data to a subset
of interest, using the query algebra, or start with a single object of in-
terest and continue from there. This filtering step is crucial for system
usability because it ensures that user interaction maintains effective by
limiting the amount of data that needs to be displayed.

We tested branching scalability by generating neurites with up to
1,000 branches. Automatic collapsing and expanding of branches
works fine up to ten levels of sub-branching. If that number is ex-
ceeded, sub-branches are often collapsed in the detail view which led
users to manually expand sub-branches for exploring them in high-
est detail. In the future, we want to allow detaching sub-branches of
interest from the main neurite, to explore them in more detail with-
out cluttering the view with unimportant branches of the same neurite.
The maximum number of synapses is currently only limited by the
clustering mechanism. If more than 25 synapses are combined into a
single cluster, synapses within this cluster should again be partitioned
into sub-clusters to avoid visual clutter.

9 CASE STUDIES

We demonstrate the utility of NeuroLines based on two evaluation
cases taken from user sessions of our collaborating neuroscientists
where they wanted to explore specific research questions. During the
entire development and evaluation phase we regularly held meetings
with junior and senior level neuroscientists and scientific staff. Two
of them are also co-authors of this paper. Both evaluation cases pre-
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Fig. 10: Case study 1: Synapse variations. Our collaborators focused
on multiple-hit axons (a) as neurite connectivity pattern. Subsequent
exploration of the red dendrite DI and one of its synapses (b) shows
that it makes three synapses with the blue axon, displayed as visual
links between the neurites (c). Looking at the detailed synapse at-
tributes (d) allowed our collaborators to form initial hypotheses about
the connectivity of multiple-hit axons.

sented here were performed by a developmental neuroscientist with
several years of experience in connectomics research and are typical
examples of exploratory data analysis, where the scientists adjust and
modify their original hypotheses as they advance in their analysis.

The main data set of our primary collaborators used in these cases
is an electron microscopy volume of roughly one teravoxel in size (8-
bit voxels; 955 GB). The binary segmentation volume, from which
we computed the neurite skeletons, was given in a volume of half the
resolution in x and y (24-bit voxels; 716 GB), and contains roughly
4,000 segmented objects (i.e., axons, dendrites, and individually la-
beled dendritic spines). In addition to this, the scientists have labeled
943 synapses with roughly a dozen detailed attributes such as the num-
ber of vesicles at the synapse or the spine/shaft location.

9.1 Case Study 1: Relating Variations in Synapse Struc-
ture to Neuron Connectivity

This case study was driven by a research question one of our collab-
orators is working on: “How much of the variance in the structure of
synapses can be explained by the connectivity of neurons?”” Neuronal
connectivity can be thought of in two different ways: a) Who does a
neuron speak to (i.e., to which other neurons does it connect)? b) How
loud does it speak (i.e., how often does a synapse fire, and how strong
is its electrical signal)? With today’s high-resolution EM data sets it
is possible to look at both of these attributes at the same time. While
the first attribute can be analyzed by looking at the topological con-
nectivity graph, the second part (i.e., how loud a neuron speaks) is not
as easy to evaluate. Several attributes influence the strength of neural
connections, such as the number of vesicles near a synapse, the area or
length over which two neurites touch, whether a neurite is excitatory
or inhibitory, as well as the neurite’s circumference and the spacing
of synapses along a neurite. In this case, the neuroscientist analyzed
the variance of specific synapse attributes of different connectivity pat-
terns or motifs. He compared synapse attributes of multiple-hit axons
(e.g., axon A that makes several synapses with the same dendrite B)
to attributes of single-hit axons (e.g., different axons that connect to
dendrite B) to attributes of all non-multiple-hit synapses of axon A
and/or dendrite B. Fig. 10 shows a screenshot of the on-going analysis
of neurite connectivity patterns. This initial exploration led our col-
laborators to discover new rules in synapse connectivity, which they
subsequently statistically analyzed. Here we give a general overview
of how the scientist used NeuroLines to reach his particular goal.



First, he explored the entire data set, sorted all neurites depending
on neurite type and the number of synapses, to narrow down on a first
structure of interest (i.e., dendrite D1). Using a visual query, the data
set was reduced to only include dendrite D1, all its connected axons,
and all dendrites these axons connect to. Next, the scientist analyzed
the detailed connectivity patterns, starting from dendrite D1. An initial
analysis of the attributes of all synapses of this dendrite did not reveal
any apparent patterns. Therefore, the scientist first identified several
multi-hit axons connected to dendrite D1 (Fig. 10), and then analyzed
only the synapses between these axons and dendrite D1. Some of the
attributes that the scientist looked at were given as scalar values (e.g.,
spine volume), while for other attributes (e.g.,“closeness” of both neu-
rites around the area of the synapse) the integrated 2D and 3D views
of the original EM data were used. This allowed the scientist to further
narrow down his analysis process and to slightly adjust and refine his
hypothesis. When he was sufficiently sure of his findings he handed
the data over to a statistician to conclude the analysis. Our collabora-
tor was able to perform this analysis in NeuroLines within 2-3 hours,
after having received two introductory sessions to our system that both
took roughly thirty minutes. Individual analysis steps usually took him
between several seconds (for quickly rejecting initial hypotheses) up
to 30 minutes (for narrowing in on an hypothesis, using the dynamic
queries and then methodically working through the resulting neurites
to check the validity of his hypothesis).

9.2 Case Study 2: Relating Variance in Synapse Structure
to the Branching Structure of Excitatory Dendrites

In this case study, our collaborator evaluated the branching structure
of excitatory dendrites and how this branching structure influences the
attributes of synapses along the neurite. A neurite usually gets smaller
and narrower at every branching level, meaning that the main trunk of
a neurite has a diameter that is significantly larger than the diameter
of, for example, a sub-branch of a branch of the trunk. The main
question of the scientist was how much of the variance in the structure
of synapses could be explained by (a) their absolute distance from
the cell, and (b) the branching level from the cell. The fundamental
scientific question behind this is related to sow neurons regulate when
a cell fires and when not. Does every vote (i.e., every synapse on the
dendrite) have the same influence, even though some synapses have a
much larger distance to the cell body than others?

To analyze synapse attributes in relation to the branching pattern
of excitatory neurites, our collaborator started by identifying excita-
tory neurites. When the function of a neurite is unknown, analyzing
the number of spine/shaft synapses gives an intuition for whether the
neurite is excitatory or not. The scientist evaluated synapse properties
close to the cell body in comparison to synapses far away from the cell
body (but on the main trunk), and to synapses on far away branches.
In this particular case, the study was inconclusive and led him to ac-
quire a bigger data set that will allow him to repeat this analysis with
synapses spread out over a longer distance along a dendrite.

Prior to using NeuroLines, the above analysis would have taken our
collaborator several hours, if not days to accomplish. He would have
started by looking at 2D slices of the segmented EM data set and man-
ually navigate to the locations of synapses, as they were listed in a
separate .csv file, to form an initial hypothesis. This step alone is te-
dious, error-prone, and very frustrating. He would then explain his
hypotheses to statisticians working in the same lab, who would pro-
gram Matlab scripts to try to extract all the necessary information from
the data to confirm or refute the theory. In many cases, however, the
statistician would find some suspicious outliers or errors in the data.
For the scientist this means going back to the 2D slice visualization,
manually navigating to the area the statistician had identified and fix-
ing the labeling or meta data, before starting the entire process again.
Using NeuroLines, this previous workflow is significantly sped up and
simplified. Scientists can directly test and adjust their hypotheses in
a single integrated system that allows them to identify errors directly
during their analysis. Only once the scientist is sufficiently sure about
the hypothesis, the data is given to statisticians for detailed analysis.

10 DISCUSSION

The main qualitative feedback that we received from our collaborators
matches our initial intuition: Abstracting the complex and cluttered
3D connectivity patterns into an easy-to-navigate 2D metaphor makes
it easier to find patterns in the data, but the link to the original 3D data
is still crucial for the scientists. Overall, the scientists felt that their
analysis tasks were well supported, and they specifically underlined
the added utility of integrating NeuroLines into a larger framework for
visual analysis of connectomics data. The best proof of the usefulness
of NeuroLines we got by observing our main collaborator. Whenever
we showed him a new version of the software he would get an abun-
dance of new hypotheses that he then wanted to verify or refute. He
often started with an initial hypothesis but then discovered another in-
teresting pattern that he went on to investigate. This quick turnaround
time of forming and evaluating hypotheses was not possible in our col-
laborators’ previous workflow and is exactly what we wanted to enable
with NeuroLines. One initially unforeseen, but very useful, feature of
NeuroLines is proof-reading segmentation data. Immediately when
using the tool, our collaborators would spot and identify segmentation
and annotation errors in their data that they had missed before.

The main limitation of NeuroLines with respect to analyzing
nanoscale neuronal connectivity is the relatively limited amount of
data our collaborators have acquired until now. Although they have
acquired terabytes of electron microscopy data, their current segmen-
tation and synapse labeling process is at best semi-automatic and needs
a lot of manual input. Therefore, we have evaluated NeuroLines with
large synthesized data, and asked our collaborators to navigate within
the data set, and to try to find patterns as they would do it in real data.
However, this form of scalability testing is still only an approximation
of the actual visual analysis of larger data sets in the future.

We believe that NeuroLines successfully addresses the scalability
issues present in today’s large-scale connectomics data sets, and that
our work will also be useful for designing future frameworks for visual
connectomics. The combination of abstract information visualization
views geared towards analyzing data in an efficient and intuitive way,
and traditional volume visualization techniques for exploring the orig-
inal electron microscope volume and its segmentations, creates a pow-
erful visualization suite that supports different but equally important
needs of domain scientists that want to explore large, complex data.

11 CONCLUSIONS AND FUTURE WORK

NeuroLines significantly improves the current workflow of neurosci-
entists by allowing them to quickly form and test hypotheses in their
overall goal of finding out how the brain works. It enables scientists to
focus on the connectivity of individual neurites by representing neu-
rites in a subway map-inspired 2D visualization that removes the clut-
ter and complexity of the detailed spatial representations of neurites,
while keeping the topology and important spatial cues intact.

We think that the design decisions made while developing Neuro-
Lines will be useful to developers of future visual connectomics or
large-scale visualization applications and, furthermore, argue that our
neurite visualization metaphor could be applied in more general cases
of visualizing interconnected topological trees.

In the future, with the arrival of larger data sets, we would like to
incorporate an additional level of abstraction into our visualization,
making it possible to analyze the connectivity patterns between entire
brain regions. Another interesting path for the future is the compara-
tive analysis of several data sets in a single visualization. For example,
our collaborators would like to compare the detailed connectivity pat-
terns of the brain not only between different specimen of the same
species, but also between different species, such as a mouse and a
monkey. Devising new visualization methodologies that allow scien-
tists to quickly see the differences and similarities in the connectomes
of different species would enable interesting new research directions.
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