
ProtoGraph: A Non-Expert Toolkit for Creating Animated Graphs
Malchiel Rodrigues

Harvard University
Joel Dapello

Harvard University
Priyan Vaithilingam

Harvard University
Carolina Nobre◦ *

University of Toronto
Johanna Beyer◦ †

Harvard University

Figure 1: ProtoGraph web tool interface (a). The left column shows the code editor where the user can write ProtoGraph language
statements, the right column displays the graph which dynamically renders as the user types in the editor. The bottom right panel
shows the animation timeline previewing each step of the animation. The user can share the current graph using an auto-generated
URL or export the visualization as an image or video. Sample graphs generated with ProtoGraph during the user study include a
gene regulatory network (b), a FAT tree network (c), and a Mandala artwork using hundreds of edges (d).

ABSTRACT

Creating intuitive and aesthetically pleasing visualizations and ani-
mations of small-to-moderate-sized graphs in the form of node-link
diagrams is a common task across many fields, particularly in peda-
gogical settings. However, creating a graph visualization either re-
quires users to manually construct a graph by hand or programming
skills. We present ProtoGraph, an English-like programming lan-
guage for non-expert users to rapidly specify and animate node-link
graph visualizations. The language supports iterative prototyping,
thereby allowing non-experts users to intuitively refine their graphs,
and to easily create animated graphs. The key features of ProtoGraph
include a web-based live coding interface, previews for the different
states in an animated graph, integrated user documentation, and an
active-learning style tutorial. We have integrated the ProtoGraph
language into an open-source JavaScript graph visualization library
for rendering and a graphical web interface for rapid prototyping. In
a user study, we show that participants with varying coding experi-
ences were able to quickly learn the ProtoGraph language and create
real-world pedagogical visualizations, showing that ProtoGraph is
easy to learn, efficient to use, and extensible.

Index Terms: Human-centered computing—Visualization—
Visualization techniques—Graph drawings; Human-centered
computing—Visualization—Visualization systems and tools—
Visualization toolkits

1 INTRODUCTION

Visualizing network graphs is a deeply ingrained task in a variety
of fields such as networking and software engineering, biology,

*e-mail: cnobre@cs.toronto.edu
†e-mail: jbeyer@g.harvard.edu
◦ indicates equal contribution

neuroscience, and ecology, and often used for pedagogical purposes
[3,6,18–20,29]. In addition to showing the structure of static graphs,
visualizing dynamic graphs, where the structure or attributes change
over time, is essential for a deeper understanding of these graphs and
especially useful in pedagogical settings. For example, sequentially
highlighting edges and nodes, or building the visualization one piece
at a time can greatly facilitate understanding of the network.

Existing methods for specifying and animating graphs span a
broad spectrum of complexity, from code-free drawing-based ap-
proaches to expressive programming-based tools. Drawing-based
methods, such as PowerPoint, are effective for small graphs and short
animation sequences, but quickly become time-consuming and inad-
equate for larger or more complex graphs. Furthermore, even small
layout changes often require manual rearrangement of all edges and
nodes. On the other hand, tools and programming languages that are
designed for graph specification and animation (e.g., DOT [17]) are
often powerful but present the user with a steep learning curve. As
a result, they often require familiarity with programming and some
degree of graph visualization knowledge [32].

Our work is inspired by the graph specification language
DOT [17] and GraphVis [14]. However, we target non-expert users
by focusing on learnability, iterative prototyping, and the easy and
efficient creation of animated graphs. Our target user wants to create
node-link diagrams quickly to sketch out ideas or demonstrate a
graph-related concept. Example use cases include teaching biologi-
cal pathways, or explaining the graph structure of neural nets. Users
can construct nodes, edges, and attributes step-by-step or iteratively
refine their graph (e.g., by later adding or modifying nodes and
edges), similar to describing their graph verbally to a bystander,
making it more intuitive for non-programmers.

In this paper, we present the ProtoGraph system, which in-
cludes a language, library, and web tool for increasing the ease
and speed of rapidly prototyping static and dynamic graph visu-
alizations. The ProtoGraph language offers an iterative graph
specification paradigm, supports dynamically changing the graph
structure and attributes for animating a graph, and is extensible. The

ProtoGraph library renders graph visualizations and animations
specified in the format of the ProtoGraph language. Our web-based
graphical interface integrates the ProtoGraph library to offer a live-
coding environment. Users can navigate and preview the individual
stages in an animated graph, and access integrated help and tutorials.
Finally, we conducted a user study to evaluate the learnability, us-
ability, and expressiveness of ProtoGraph. The study revealed that
participants with varying programming experiences were able to
quickly create their own pedagogical visualizations in ProtoGraph.
ProtoGraph and its code are available at https://protograph.io
and https://github.com/protograph-io, respectively.

2 RELATED WORK

Graph Specification and Visualization. Graph specification refers
to the way in which the structure and attributes of a graph are defined.
Tools that support graph specification [2, 4, 7, 31, 35] often import
standard graph file formats such as GEFX [7], GraphML [11], and
DOT [17]. After importing graphs, tools such as GraphViz [14],
Gephi [7], Cytoscape [38], GraphLet [22], GUESS [2], and Tulip [4]
provide users with an interface to visualize the graphs. Changes to
the graph can be made by updating the underlying graph structure
and refreshing the visualization on demand.

Scripting-based solutions such as networkx [21], JGraph [5], Cy-
toscape.js [15], and others [10, 12, 13, 37], take a similar approach
in that the graph is first specified – either externally or in the script
itself – and then visualized on demand. This separation between
graph definition and visualization can slow the process of iterating
on graph structures. ProtoGraph addresses this by building the graph
specification into the ProtoGraph language and providing a built-in
code editor, which enables real-time visual feedback as the graph
is being constructed. This immediate feedback loop between graph
specification and visualization is critical to supporting quick iteration
on graph prototypes. The benefit of reducing the barrier and delay
between iterating and visualizing the specification in one interface
has been shown in tools like edgy [8], Jupyter Notebooks [33], a
Python library for Tulip [26], and Observable [9]. ProtoGraph con-
tinues this idea of rapid iteration, quick re-rendering, and integrated
interfaces while allowing the user many of the benefits of traditional
scripting and reducing the barrier to entry and complexity.

Graph Animation. Graph animation is the visual transformation
of a graph between two states [16]. The key distinction between
existing approaches is in how these states are defined. Defining
animation states based on graph specification can be done by assign-
ing time stamps to nodes and edges directly in the specifications of
dynamic graphs [7], by sequencing static graphs [23], or by using a
scripting approach to modify an existing graph structure into its new
state [10, 12]. ProtoGraph simplifies the process of defining anima-
tion states by introducing keyframes. With a single keyword (step),
users can define each state of the graph that should be animated. We
describe keyframes as they are used for animation in more detail
in Section 4.1. Animation is a key contribution of the ProtoGraph
language, and the decision to incorporate state definition as a single
keyword reflects the importance of this aspect. Additionally, our tool
provides a playback interface that gives the user a visual overview
of each state as well as control in navigating between them.

Expressive Visualization Authoring Tools Expressive visualization
authoring tools provide design environments for generating visualiza-
tions that are comparable in expressiveness to programming-based
tools [24, 25, 27, 34, 36]. These approaches have several similarities
with the goals of ProtoGraph, including simplicity, ease of learning,
and aimed at non-experts. However, the majority of these tools are
aimed at generating standard visualizations and are not particularly
geared towards graphs. Two exceptions are Graphies [34] and Data-
Toon [24], which are designed for interactive graph authoring, and
support some version of animation. Graphies for example supports

Figure 2: Using objects, commands, and selectors to create an ani-
mated graph. (a) ProtoGraph language source code. (b) Individual
frames of the three-step animation sequence. For a live example of
a more complex animation, visit https://bit.ly/3zVJdE0.

snapshots, which is similar in nature to ProtoGraph’s keyframes.
In contrast to ProtoGraph, however, they use direct manipulation,
which limits scalability. ProtoGraph, on the other hand, uses a
declarative language to easily define, iterate, and animate graphs.

3 GOALS & REQUIREMENTS

Our target users are people interested in quickly creating network
graphs who are neither network nor graph visualization experts nor
necessarily experienced programmers. Therefore, the goal of Proto-
Graph is to provide a graph creation and visualization environment
that is easy to learn and use, while being expressive and extensible.

We identified three technical and two user-focused requirements:
(R1) Graph structure specification of nodes, edges, and associated
data properties, such as edge direction or weight. Additionally, users
must be able to specify visual graph properties, such as labels, visual
styles, and layouts. (R2) Graph animation by dynamic changes
to the graph structure, its data properties, or visual properties. (R3)
Real-time visual feedback during graph specification and the ability
to display dynamic graphs and their changes over time. (R4) High
learnability. ProtoGraph must be easy to read and easy to write. We
consider an integrated help system and onboarding learning material
essential for learnability. (R5) High efficiency. The system must
be efficient, enabling a high level of productivity [30], which we
measure as the time needed to create visualizations.

4 PROTOGRAPH

The ProtoGraph system consists of three components: (1) the Proto-
Graph language, for specifying graph structures, visual properties,
and animation sequences; (2) the ProtoGraph library, an extensible
parsing and rendering engine for the ProtoGraph language; and (3)
the ProtoGraph webtool which embeds the ProtoGraph library into
an interactive environment for users to create and share graph visu-
alizations and animations online. Fig. 1(b-d) shows example graphs
that were generated with the ProtoGraph web tool.

4.1 The ProtoGraph Language
We designed the ProtoGraph language with a declarative, English
language-like syntax, with stylistic inspiration from the likes of
YAML [39], SQL [28], and DOT [17], which are all widely regarded
as approachable, intuitive, and easy to use and read (R4, R5).

We use three core semantic categories (objects, commands, and
selectors) to define animated graphs and their properties (R1, R2).
Objects are stateful entities, such as nodes and edges, but also
behind-the-scenes entities such as the layout object which defines
global rendering properties.
Commands create, alter, or otherwise operate on objects. The com-
mand syntax is kept as simple and English-like as possible – a line
starts with a named command, followed by any parameters taken
by the command. Users can create new nodes using the add com-
mand, by specifying how many nodes are to be created. For instance,

https://protograph.io
https://github.com/protograph-io
https://bit.ly/3zVJdE0

add 2 nodes will generate two nodes with default visualization
parameters and labels. When creating nodes, the user can immedi-
ately modify node attributes by indenting a set of key-value pairs
following node creation, as shown in Fig. 2a (lines 1-3). Likewise,
edges can be created and attributes modified with the connect com-
mand, as shown in Fig. 2a (lines 7-9). As a shorthand for generating
nodes users can write a1 to generate node a1, a1 -> a2 to generate
a directed edge between nodes a1 and a2, or chain the shorthand
together: a1 - a2 - a3 to create undirected edges between a1,
a2, and a3. If nodes or edges already exist, the shorthand returns
the attributes of the existing nodes or edges to be modified. A
full list of commands can be found in our online documentation
(https://protograph.io/docs.html).

The step command creates animation frames. Calling step
creates a new frame that starts with the state of the prior frame. Users
only have to specify the changes to the prior frame, as opposed to
having to specify a complete graph in each frame. This structure
makes specifying and rearranging animation frames particularly
simple. Fig. 2 shows a simple animated graph with three frames.
Selectors query and return sets of nodes and/or edges. We chose
an SQL-like selector system because of the English-like structure
and popularity of SQL. A user can, for example, select all nodes
with select (nodes), or select edges with a given attribute (see
Fig. 2a, lines 13-14). Parentheses around the query string to help
resolve fundamental ambiguities in the English language, while
also providing a clear visual grouping of what is being selected.
Selectors are fully composable within commands operating on nodes
or edges. To maintain English-like readability, when combining
multiple selectors, we allow the user to drop the select keyword.

4.2 The ProtoGraph Library

To make ProtoGraph accessible to a wide range of users, we pro-
vide a TypeScript library for real-time parsing and rendering of the
ProtoGraph language in web environments (R3).

The library includes a parser which validates and converts a
string of ProtoGraph language input into JavaScript data objects. The
interpreter is the orchestrator of the library; it takes the JavaScript
data objects and directs the renderer to perform appropriate actions
for the translated language fragment. The renderer stores the state
of the graph and paints the final visualization. Our detailed docu-
mentation is available at https://github.com/protograph-io.

To ensure extensibility, the library accepts grammar fragments
and logic handlers from extensions that extend the ProtoGraph lan-
guage and system. New extensions can be implemented in either
TypeScript or JavaScript. Parts of the ProtoGraph library, such as
the SQL-like selector system, are implemented as extensions.

4.3 The ProtoGraph Web Tool

The ProtoGraph web tool (https://protograph.io/) provides
an environment for users of varying experience levels to proto-
type graph visualizations in real-time on any device with a modern
browser. The web tool offers a React.js interface and includes a
web-based text editor with syntax highlighting and auto-complete
(R4, R5), as well as a Render Pane with real-time visual feedback
and playback controls and thumbnails of all animation steps (R3).
Code Editor Pane. The editor pane provides an interface for the
user to define their graphs (Fig. 1a). The editor is based on the
CodeMirror JS library [1] and provides syntax highlighting. It
also offers auto-completion of commands and object keywords to
show short descriptions and available options and parameters that
the corresponding line supports. Finally, the editor in conjunction
with the parser and interpreter provides error indicators with a line
number, character highlighting, and a detailed error message.
Render Pane. By default, the real-time renderer displays the anima-
tion step of the graph that is currently being edited. For animated

Figure 3: Example User Study Tasks. In Section I participants were
asked to write code to best recreate a given graph visualization such
as in (a) and (b). In Section II participants were asked to read the
provided code and sketch out the corresponding graph on a digital
whiteboard. Example answers are shown in (c) and (d).

graphs, we further provide an overview of the entire animation se-
quence as small thumbnails in a navigation bar at the bottom of the
render pane and provide media controls to playback the animation.
In our current implementation, the render pane is built on top of
Cytoscape.js [31], a JS graph theory and visualization library.
Collaboration. We provide several features for collaboration among
different devices and users. First, we auto-save a user’s input locally,
enabling them to leave and come back to their work. We can also
store a user’s input as URL parameters, enabling link sharing be-
tween users or devices. Finally, we support the export of graphs as
PNG images or WebM videos.
Tutorial and Teaching Material. In the web tool’s welcome screen,
users can explore graph examples or quickly iterate on an idea by
starting with a template that is related to what they envision. The
ProtoGraph web tool also provides an active learning-based tutorial
to help users quickly get started with the interface and language. The
tutorial further shows users how to use the built-in documentation
interface. This documentation interface provides users with a simple
and easy way to learn about each part of the ProtoGraph Language
and see relevant examples while using the tool.

5 EVALUATION

We focus on evaluating the learnability, usability, and expressiveness
of ProtoGraph. To that end, we conducted a crowdsourced user
study to evaluate how ProtoGraph can be used by people of varying
programming experiences. We measured users’ ability to write
and read ProtoGraph code and collected participants’ subjective
feedback. For details, we refer to the supplementary material.
Procedure. We recruited 41 participants on the crowdsourcing
platform Prolific and paid them $15.00 USD for an estimated du-
ration of 90 minutes. The study consisted of five phases: Passive
Training, Active Training, Trials, Study, and Demographics and
Feedback. The full study can be viewed at http://protograph.
projectalg.com/tool/study.
Tasks. The study itself included three sections: writing with the
ProtoGraph language, reading the ProtoGraph language, and a final
free explore task. In the writing portion of the study, participants
were given the image of a graph visualization or frames of a short
animation and asked to recreate the visualization with ProtoGraph
(Fig. 3 (a,b)). In the reading portion, participants were given an
excerpt of code in the ProtoGraph language presented in a read-only
version of the ProtoGraph internal code editor and asked to sketch
the visualization with the provided digital whiteboard tool (Fig. 3

https://protograph.io/docs.html
https://github.com/protograph-io
https://protograph.io/
http://protograph.projectalg.com/tool/study
http://protograph.projectalg.com/tool/study

0.00 0.25 0.50 0.75 1.00

T1

T2

T3

T1

T2

T3

Task Accuracy

Se
ct

io
n

I
W

rit
in

g
Co

de

Se
ct

io
n

II
Re

ad
in

g
Co

de
 0.78~[0.71,0.85]

0.78~[0.69,0.86]

0.88~[0.80,0.94]

0.88~[0.82,0.92]

0.87~[0.80,0.93]

0.85~[0.78,0.91]

Figure 4: Participant accuracy on the three reading and three writing
tasks in the study. On average, participants scored over 75% on all
tasks. A red dot and line depict the average and 95% confidence
interval, distribution shape is shown as light gray.

Figure 5: Results from two participants in Section III of the study,
where we asked them to create their own visualizations. (a) Protein
creation process from a participant with visualization experience of
5 out of 7 and coding experience of 5 out 7. (b) Family tree written
in Portuguese (participant experience: vis 4/7, coding 1/7).

(c,d)). In the final free explore tool, we asked participants to create
their own visualization in ProtoGraph.
Measures. We collected both quantitative and qualitative mea-
sures (i.e., completion times, tracked user interactions, submitted
sketches and code, and subjective feedback using a 7-point Likert
scale and free responses). To calculate correctness, two separate
graders scored the individual components of each task separately
(e.g., topology, layout, color, labels).

6 RESULTS

We collected 39 valid study submissions (19 female, 19 male, 1 non-
binary). Most participants had little or no coding experience (see
Fig 6, left). We refer to the supplementary material for more detailed
task descriptions, scoring methodology, and results. The study re-
sults are also available at https://protograph.io/analysis/.

Figure 4 shows the distribution of participant performance for
the tasks in Sections I (writing) and II (reading) of the study. On
average, participants scored over 75% on all tasks. Participants
scored highest on tasks in the code writing portion, with averages
between 80% and 90% accuracy. There was no significant impact of
prior coding experience or experience with graph visualization on
participants’ accuracy, indicating that ProtoGraph is easy to adopt
even by non-programmers and novices.
Section I: Writing. The writing section revealed that even with
brief training and a short acquaintance period, participants were
able to create graphs and adjust their visual properties successfully,
validating the learnability of ProtoGraph (R4). Furthermore, as tasks
progressed, participants were able to achieve the desired target with
increasing accuracy. Task 2 required the use of a language extension,
which participants were able to achieve with an average success rate
over 75%; this validated the extensibility of ProtoGraph.
Section II: Reading. The ProtoGraph language syntax resulted in a
high success rate for reading and determining topology, layout, and
visual style of given code. Participants struggled most with reading
label specifications (success rate of over 50%). This may have to do
with ProtoGraph’s optimization that allows names to be specified in
the constructor or as a style attribute.
Section III: Free Explore. The optional Free Explore section al-
lowed participants to create any graph visualization or animation. It
validates that the ProtoGraph system can be used to solve real-world

Figure 6: Left panel: Participant self-reported coding experience
from 1 (no experience) to 7 (experienced coder). Right panel: Par-
ticipant feedback on the usefulness, learnability, readability and
usability of ProtoGraph from 1 (very difficult) to 7 (very easy).

scenarios Fig. 5 shows some notable examples. Fig. 5a, for instance,
shows the multi-step protein creation process as an animation and
fits the scenario where a biology teacher prepares a graphic for a
slideshow. This participant also used features not introduced in the
training, showing that they successfully navigated the documentation
and autocompletion to find specific styles that they desired.
Participant Feedback. We collected user demographics and asked
for feedback in a 7-point Likert scale and a free-responses. The
vast majority of users rated ProtoGraph as highly useful, learnable,
readable, and usable (Fig. 6). Especially the feedback from partici-
pants with self-reported coding experiences of 1 and 2 validate the
approachability and ease of use for non-programmers, e.g., “For
someone that has little experience with code it is simple to read it”.
A full report of user scores and feedback can be found in the supple-
mentary material. Ultimately, the feedback shows that ProtoGraph
was well received by participants at all levels of coding experience.

7 DISCUSSION

The high success rate in which participants were able to complete
the given tasks confirms ProtoGraph’s ability to specify animated
graphs and provide real-time visual feedback (R1-R3). Most of our
participants had little programming experience and knowledge of
graph visualizations. Yet, participants were able to complete tasks
with high accuracy and increasing efficency (speed), using fewer
documentation accesses as the study progressed. These results give
us confidence in ProtoGraph’s learnability (R4) and efficiency (R5).

Our study also revealed some limitations. First, participants
only received minimal training (a 1.5-minute video, a short active
training, and a trial to test comprehension). Participants might have
performed better with a longer training session. Second, ProtoGraph
is designed to present node-link diagrams in JavaScript/web-like
environments, which limits its scalability. Thus, ProtoGraph is not
well suited for large graphs (i.e., > 5,000 edges/elements or > 200
nodes sparse graph - depending on the layout algorithm).

8 CONCLUSION AND FUTURE WORK

In this project, we set out to design a language and toolkit for
creating graph visualizations and animations, specifically one that
is easier to learn than current programmatic solutions and that is
approachable for people with little to no programming experience.
ProtoGraph can be useful for educators, collaborators, speakers, and
anyone who creates small to medium-sized node-link diagrams or
animations. Our integrated system allows for rapid prototyping with
real-time feedback and minimizes memorability burdens and error
rates while increasing efficiency by including syntax error reporting,
autocomplete, and built-in documentation. Participants in our user
study performed with high accuracy, showed impressive learning
rates and increases in efficiency, and reported positive feedback.

Future work may explore questions about long-term learnability
and efficiency. Further, research in natural language processing and
artificial intelligence could provide a different interface to program-
ming. With ProtoGraph we hope to inspire future research into
making visualization systems more available and approachable to
people outside of the visualization and computer science fields.

https://protograph.io/analysis/

ACKNOWLEDGMENTS

This work was partly funded by NSF grant NCS-FO-2124179.

REFERENCES

[1] CodeMirror 5. https://codemirror.net/.
[2] E. Adar. GUESS: A language and interface for graph exploration. In

Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems - CHI ’06, p. 791. ACM Press. doi: 10.1145/1124772.
1124889

[3] S. Asmuss and N. Budkina. On usage of visualization tools in teaching
mathematics at universities. In Proceedings of the 18th International
Scientific Conference Engineering for Rural Development, pp. 1962–
1969, 05 2019. doi: 10.22616/ERDev2019.18.N515

[4] D. Auber, D. Archambault, R. Bourqui, M. Delest, J. Dubois, A. Lam-
bert, P. Mary, M. Mathiaut, G. Melançon, B. Pinaud, B. Renoust, and
J. Vallet. Tulip 5. In R. Alhajj and J. Rokne, eds., Encyclopedia of
Social Network Analysis and Mining, pp. 1–28. Springer New York.
doi: 10.1007/978-1-4614-7163-9 315-1

[5] J. Bagga and A. Heinz. Jgraph— a java based system for drawing
graphs and running graph algorithms. In Graph Drawing, pp. 459–
460. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002. doi: 10.
1007/3-540-45848-4 45

[6] J. E. Baker, I. F. Cruz, G. Liotta, and R. Tamassia. A new model
for algorithm animation over the www. ACM Computing Surveys,
27(4):568–572, dec 1995. doi: 10.1145/234782.234792

[7] M. Bastian, S. Heymann, and M. Jacomy. Gephi: an open source
software for exploring and manipulating networks. International AAAI
Conference on Weblogs and Social Media, 8:361–362, 2009. doi: 10.
13140/2.1.1341.1520

[8] S. Bird. Edgy. https://snapapps.github.io/.
[9] M. Bostock. Observable - Where teams explore, analyze, and commu-

nicate with data, together. https://observablehq.com/.
[10] M. Bostock, V. Ogievetsky, and J. Heer. D³ data-driven docu-

ments. IEEE Transactions on Visualization and Computer Graphics,
17(12):2301–2309, 2011. doi: 10.1109/TVCG.2011.185

[11] U. Brandes, M. Eiglsperger, J. Lerner, and C. Pich. Handbook of Graph
Drawing and Visualization, chap. Graph Markup Language (GraphML).
CRC Press, 2014.

[12] J.-P. Coene. Sigmajs: An R htmlwidget interface to the sigma.js
visualization library. Journal of Open Source Software, 3(28):814. doi:
10.21105/joss.00814

[13] G. Csardi and T. Nepusz. The igraph software package for complex
network research. InterJournal, Complex Systems:1695.

[14] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull.
Graphviz— Open Source Graph Drawing Tools. In Graph Drawing,
Lecture Notes in Computer Science, pp. 483–484. Springer. doi: 10.
1007/3-540-45848-4 57

[15] M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer, and G. D. Bader.
Cytoscape.js: A graph theory library for visualisation and analysis.
Bioinformatics, 32(2):309–311. doi: 10.1093/bioinformatics/btv557

[16] C. Friedrich and P. Eades. Graph drawing in motion. vol. 6, 11 2002.
doi: 10.1007/3-540-45848-4 18

[17] E. Gansner, E. Koutsofios, and S. North. Drawing graphs with dot.
Technical report, 2006.

[18] S. Grissom, M. F. McNally, and T. Naps. Algorithm visualization in cs
education: Comparing levels of student engagement. In Proceedings
of the 2003 ACM Symposium on Software Visualization, SoftVis ’03, p.
87–94. Association for Computing Machinery, New York, NY, USA,
2003. doi: 10.1145/774833.774846

[19] P. J. Guo. Online python tutor: Embeddable web-based program
visualization for cs education. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education, SIGCSE ’13, p. 579–584.
Association for Computing Machinery, New York, NY, USA, 2013.
doi: 10.1145/2445196.2445368

[20] S. Hadjerrouit and H. H. Gautestad. Using the visualization tool simreal
to orchestrate mathematical teaching for engineering students. In IEEE
Global Engineering Education Conference (EDUCON), pp. 38–42,
2018. doi: 10.1109/EDUCON.2018.8363206

[21] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure,
dynamics, and function using NetworkX. In Proceedings of the 7th
Python in Science Conference.

[22] M. Himsolt. The graphlet system (system demonstration). In Graph
Drawing, pp. 233–240. Springer Berlin Heidelberg, Berlin, Heidelberg,
1997.

[23] M. Jacobsson. D3-graphviz. https://github.com/magjac/d3-graphviz.
[24] N. W. Kim, N. Henry Riche, B. Bach, G. Xu, M. Brehmer, K. Hinckley,

M. Pahud, H. Xia, M. J. McGuffin, and H. Pfister. DataToon: Drawing
Dynamic Network Comics With Pen + Touch Interaction. In Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing
Systems, pp. 1–12. ACM. doi: 10.1145/3290605.3300335

[25] N. W. Kim, E. Schweickart, Z. Liu, M. Dontcheva, W. Li, J. Popovic,
and H. Pfister. Data-Driven Guides: Supporting Expressive Design
for Information Graphics. 23(1):491–500. doi: 10.1109/TVCG.2016.
2598620

[26] A. Lambert and D. Auber. Graph analysis and visualization with Tulip-
Python. In EuroSciPy 2012 - 5th European meeting on Python in
Science. Bruxelles, Belgium, Aug. 2012.

[27] Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. Stasko. Data Illustrator: Augmenting Vector Design
Tools with Lazy Data Binding for Expressive Visualization Authoring.
In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, pp. 1–13. ACM. doi: 10.1145/3173574.3173697

[28] J. Melton and A. R. Simon. SQL: 1999: Understanding Relational
Language Components. Elsevier.

[29] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C. Hund-
hausen, A. Korhonen, L. Malmi, M. F. McNally, S. Rodger, and
J. Velázquez-Iturbide. Exploring the role of visualization and engage-
ment in computer science education. In ITiCSE-WGR ’02, 2002. doi:
10.1145/782941.782998

[30] J. Nielsen. Usability Engineering. Morgan Kaufmann, 1994.
[31] D. Otasek, J. H. Morris, J. Bouças, A. R. Pico, and B. Demchak.

Cytoscape Automation: Empowering workflow-based network analysis.
Genome Biology, 20(1):185, 2019. doi: 10.1186/s13059-019-1758-4

[32] K. Pantazos, S. Lauesen, and R. Vatrapu. End-user development of
information visualization. In End-User Development, pp. 104–119.
Springer, Berlin, Heidelberg, 2013.

[33] F. Perez and B. Granger. Project Jupyter: Computational narratives as
the engine of collaborative data science, 2015. https://www.jupyter.org.

[34] H. Romat, C. Appert, and E. Pietriga. Expressive Authoring of Node-
Link Diagrams With Graphies. IEEE Transactions on Visualization
and Computer Graphics, 27(4):2329–2340, 2021. doi: 10.1109/TVCG.
2019.2950932

[35] M. Santini. GraphvizAnim. https://github.com/mapio/GraphvizAnim.
[36] A. Satyanarayan and J. Heer. Lyra: An Interactive Visualization Design

Environment. Computer Graphics Forum, 33(3):351–360, 2014. doi:
10.1111/cgf.12391

[37] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics, 23(1):341–350, 2017. doi: 10.
1109/TVCG.2016.2599030

[38] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,
N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: A software envi-
ronment for integrated models of biomolecular interaction networks.
Genome research, 13(11):2498–2504, 2003.

[39] V. Sinha, F. Doucet, C. Siska, R. Gupta, S. Liao, and A. Ghosh. YAML:
A tool for hardware design visualization and capture. In Proceedings
13th International Symposium on System Synthesis, pp. 9–14, 2000.
doi: 10.1109/ISSS.2000.874023

	Introduction
	Related Work
	Goals & Requirements
	ProtoGraph
	The ProtoGraph Language
	The ProtoGraph Library
	The ProtoGraph Web Tool

	Evaluation
	Results
	Discussion
	Conclusion and Future Work

