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Fig. 1: Visual Motif Analysis. (a) In Vimo, neuroscientists search large brain networks (view online: [29]) by (b) sketching neuronal 
connectivity motifs. (c) Neurons forming a motif instance (MI) are visualized in 3D. Vimo emphasizes the relationship between the 
sketched motif and the neurons’ connectivity using a continuous focus&context approach (d, e). First, Vimo prunes neuron branches 
unrelated to the motif (d). Next, users explore the connectivity between neurons in an exploded view that untangles complex neuron 
morphologies and uses hierarchical synapse clustering and bundling to highlight connections (e). Data: FlyEM Hemibrain [44]. 

Abstract—Recent advances in high-resolution connectomics provide researchers with access to accurate petascale reconstructions of 
neuronal circuits and brain networks for the first time. Neuroscientists are analyzing these networks to better understand information 
processing in the brain. In particular, scientists are interested in identifying specific small network motifs, i.e., repeating subgraphs of 
the larger brain network that are believed to be neuronal building blocks. Although such motifs are typically small (e.g., 2 - 6 neurons), 
the vast data sizes and intricate data complexity present significant challenges to the search and analysis process. To analyze these 
motifs, it is crucial to review instances of a motif in the brain network and then map the graph structure to detailed 3D reconstructions of 
the involved neurons and synapses. We present Vimo, an interactive visual approach to analyze neuronal motifs and motif chains in 
large brain networks. Experts can sketch network motifs intuitively in a visual interface and specify structural properties of the involved 
neurons and synapses to query large connectomics datasets. Motif instances (MIs) can be explored in high-resolution 3D renderings. 
To simplify the analysis of MIs, we designed a continuous focus&context metaphor inspired by visual abstractions. This allows users 
to transition from a highly-detailed rendering of the anatomical structure to views that emphasize the underlying motif structure and 
synaptic connectivity. Furthermore, Vimo supports the identification of motif chains where a motif is used repeatedly (e.g., 2 - 4 times) 
to form a larger network structure. We evaluate Vimo in a user study and an in-depth case study with seven domain experts on motifs in 
a large connectome of the fruit fly, including more than 21,000 neurons and 20 million synapses. We find that Vimo enables hypothesis 
generation and confirmation through fast analysis iterations and connectivity highlighting. 

Index Terms—Visual motif analysis, Focus&Context, Scientific visualization, Neuroscience, Connectomics. 

1 INTRODUCTION 

Recent developments in high-throughput electron microscopy (EM) 
have allowed large-scale brain mapping at the level of individual 
synapses, i.e., connectomics. These new brain tissue datasets, along 
with advances in automated segmentation, enable scientists to accu-
rately reconstruct 3D wiring diagrams of the biological neural networks. 
For example, the new H01 dataset [50] captures a cubic millimeter of hu-
man brain tissue containing about 57,000 segmented neurons, and their 
150 million synapses, automatically reconstructed from 1.4 petabytes 
of imaging data. Once the data is fully proofread, studying neuronal 
connectivity is the key to understanding how the brain computes. Since 
analyzing an entire brain network is infeasible, neuroscientists use 
motif analysis as a divide-and-conquer approach to extract small, and 
comprehensible subgraphs from the brain network, which represent neu-
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ronal building blocks [21, 24, 28, 47, 62]. However, synapse-level motif 
analysis of connectomes is still underexplored. The reason for that is 
three-fold: First, few datasets exist that are large enough to contain 
thousands of complete and proofread neurons at an image resolution 
that resolves individual synapses [12, 34, 44, 50, 54]. Thus, previous ap-
proaches mainly focused on small volumes and truncated networks [1] 
or used heuristics to estimate synaptic connections in lower-resolution 
data [51]. Second, large graphs are difficult to analyze, especially for 
non-graph experts. Finding motifs in a large graph is computationally 
expensive, and most previous motif analysis tools require programming 
experience. Third, neurons and synapses have a dual representation in 
the graph compared to the original imaging data. In a graph, neurons 
are nodes, and synapses are edges. In brain tissue, however, neurons 
are long, tree-like structures, while synapses are small surfaces. These 
conceptually different representations make it difficult to visualize how 
the motif structure relates to a set of connected neurons. 

A graph motif is a recurring small subgraph of a larger graph, such 
as a feedback loop between neurons. For example, researchers have 
recently identified network motifs in the brain of a fruit fly of three 
to six neurons that are responsible for context-dependent action selec-
tion [24]. However, neuroscientists typically need to combine motif 
search with an in-depth analysis of motif instances (MIs), which are 
specific neurons that form a motif. We find that neuroscientists prefer 
analyzing the 3D anatomy of MIs over abstract connectivity graphs or 
2D abstractions since oversimplified 2D layouts can not depict com-
plex spatial arrangments like entangled neurons. Also, 2D layouts can 
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Fig. 2: Different motif query approaches. Our visual sketching 
approach (left), high-level domain-specific language DotMotif [33] 
(middle), and graph query language Cypher [17] (right). 

distort neuronal anatomy leading to inaccurate estimates of information 
flow. Thus, only 3D views provide accurate spatial context for neurosci-
entists. However, the structure of neurons is so intricate and complex 
that even for small motifs, a 3D view of several neurons quickly suffers 
from occlusion and visual clutter. Ideally, a spatial view allows for 
identifying parts of a neuron actively involved in a motif. Yet, no visual 
tools exist to explore the 3D nature of neuronal motifs. 

In this paper, we present Vimo, a novel visualization and analysis 
tool to explore neuronal motifs and motif chains in large brain net-
works. Our work makes three main contributions. First, we identify 
domain-specific goals for neuronal motif analysis based on interviews 
with neuroscience domain experts. Thus, we derive a set of analysis 
tasks that are the basis for the design of our web-based visualization 
tool Vimo. Second, we propose a scalable motif analysis workflow, 
including the design of a flexible motif searching approach based on 
interactive sketching. Scientists draw nodes and edges in a sketch-
ing panel to query for their desired motif without having to program. 
Our queries leverage biological constraints such as neuron types to 
reduce computational complexity, scale to large brain networks, and 
give interactive feedback on the number of motif occurrences in the 
brain network. Additionally, we integrate a focus&context scheme for 
analyzing motif instances and motif-based synaptic chains to facilitate 
the user’s understanding of how the neuron’s morphology relates to 
motif connectivity. We do so by de-emphasizing non-motif-relevant 
parts of the neurons (context) to focus on the motif-relevant aspects. Im-
portantly, we do not change neuron morphology but gradually shift the 
focus using neuron pruning, exploded views, and hierarchical synapse 
clustering (see Fig. 1c-e). Third, we demonstrate the integration of our 
motif analysis workflow into Vimo, an open-source [56] and web-based 
visualization tool. Vimo’s novelty lies in combining state-of-the-art 
methods from scientific visualization, graph theory, and neuroscience 
into a useful, interactive tool based on a detailed goal and task analysis 
with domain scientists. We also integrated Vimo’s motif sketching inter-
face into the Neuprint connectome analysis platform [7] and released 
a domain-agnostic UI component for motif sketching [9] to facilitate 
motif analysis in disciplines other than connectomics. We evaluate 
Vimo with a qualitative user study and a case study of visual input 
neurons in the fly brain. 

2 RELATED WORK 

Connectomics and Motif Analysis. Motif analysis [39] plays a central 
role in connectome analysis [18,24,46,59]. Hence, numerous computa-
tional methods have emerged for examining connectivity motifs within 
connectomes. Matejek et al. [32] present an optimized and parallelized 
subgraph enumeration algorithm to count the occurrences of motifs 
in large brain networks. DotMotif [33] is a domain-specific language 
to write motif queries and compiles to common python tools and the 
Cypher graph query language [17]. Vimo builds on DotMotif, but offers 
a visual non-programming interface to create motif queries (see Fig. 2). 
Previous Motif Analysis Workflow. In the past, the motif analysis 
workflow of our collaborators was considerably more laborious due 
to complex and inaccessible technology. They often cited time con-
straints and difficult-to-use tools as barriers that prevented them from 
performing motif analysis. For instance, writing programmatic motif 
queries is challenging as users must be well-versed with graph query 
programming languages [17, 40]. Additionally, existing visualization 
tools have not integrated 3D analysis of MIs into their workflows. Previ-
ously, users had to copy neuron IDs obtained from programmatic graph 
queries into tools like Neuroglancer [30]. Furthermore, none of the 

Fig. 3: Motifs in brain networks. (a) Large connectomes like the 
FlyEM hemibrain dataset [44] can be interpreted as (b) directed graphs, 
where neurons represent nodes and synapses are represented as edges. 
(c) Network motifs are recurrent subgraphs in the larger brain network. 
For example, the graph shown in (d) contains two instances (MI-1, 
MI-2) of a feedforward motif (c). 

available tools offer motif simplification strategies for a more in-depth 
examination of motif connectivity. Therefore, our collaborators mostly 
gave up on motif analysis or looked at just very selected motifs in 
Neuroglancer [30] but did not refine or extend their analyses. 
Visualization for Connectomics. Visual analysis approaches have 
been used in many subareas of connectomics, including interactive 
proofreading [13, 20], volume exploration [2], and neighborhood- [55] 
and morphology analysis [8, 36]. Beyer et al. [3] provide a compre-
hensive survey of visualization methods in connectomics. Most neural 
connectivity visualizations use node-link diagrams [2, 41], and there-
fore do not support a detailed analysis of MIs. Recently, Ganglberger et 
al. [19] proposed a 2D node-link layout that preserves the spatial con-
text of 3D brain networks. However, their work focuses on macroscale 
brain parcellations and thus does not extend to nanoscale connectivity. 
Alternative approaches have used matrix views [22] or visual abstrac-
tions in 2D that retain some morphological features, such as neuron 
branches [1] or arborizations [51]. These methods offer compact visual 
encodings that allow scientists to get a quick overview of the data. How-
ever, the 3D morphology of neurons and their spatial relations in the 
data is lost. Furthermore, most prior works focus on either very small 
volumes and, thereby, truncated brain networks [1, 2], hypothetical 
neuronal circuits [60], or use lower resolution datasets and heuristics 
to generate synapse positions [51]. Most recently, Plaza et al. [38] 
developed neuPrint, a tool to query neuronal connectivity quickly in the 
browser. neuPrint uses the Cypher language [17] to query for motifs 
but does not focus on visually highlighting the connectivity in MIs. 
Visual Graph Queries. Visual query interfaces have been used in 
many application areas and allow users to specify queries in an intuitive 
way [6, 16, 31]. Cuenca et al. [11] propose Vertigo, an approach to con-
struct and suggest graph queries and explore their results in multi-layer 
networks. Vertigo visualizes all detected subgraphs as an overlayed 
heatmap to a graph drawing. This approach, however, is not feasible for 
large connectomic graphs, as all information on the 3D morphology of 
neurons would be lost. Vigor [37] focuses on effectively summarizing 
subgraph queries by grouping results based on node features and struc-
tural result similarity. In Vimo, users can define structural similarity 
constraints like neuron types directly in the query interface. 
Visualization of Network Motifs. Visualization of motifs has been 
proposed in different domains. MAVisto [48] supports visual motif 
analysis in biological networks. However, MIs are only visualized as 
node-link diagrams, and 3D shapes of biological objects are hidden. 
Dunne [15] simplifies node-link diagrams of motifs using glyphs. Those 
simplification techniques do not extend to complex spatial data like 
neuronal structures. For dynamic networks, Cakmak et al. [5] compare 
motif significance profiles over time by plotting them as a time series. 
Visual Abstraction of Tree-Like Structures. Different visual abstrac-
tions have been proposed to analyze neurons and tree-like structures. 
Hu et al. [23] project a complex 3D tree-like structure onto a 2D plane 
while avoiding overlaps. However, their method does not scale to 
groups of treelike structures, as needed for neuronal motif analysis. 
Mohammed et al. [36] use a continuous 2D abstraction space to ana-
lyze astrocytes and neurons. Neurolines [1] uses a 2D subway map 
metaphor to display neurons. However, both approaches do not support 
motif analysis, focus on relatively small subvolumes, and would not 
visually scale to large connectivity graphs. 



Fig. 4: Data Overview. (a) The FlyEM hemibrain [44] dataset contains more than 21,000 neurons, forming a vast connectivity network. Here, we 
show 1% of those neurons as a Neuroglancer [30] rendering. An interactive version is accessible online [29]. (b) Small subsets of the dataset 
form specific network motifs. Each set of neurons forming a specific motif is called a motif instance (MI). (c) However, understanding motif 
connectivity in the complex 3D morphology of neurons is not trivial. Consequently, domain experts require more advanced tools to better 
understand how connectivity motifs are manifested in a set of neurons. 

3 BIOLOGICAL BACKGROUND 

Brain anatomy. Brain tissue primarily consists of long tubular tree-like 
neurons, which transmit signals to each other via synapses. A single 
neuron can connect to hundreds or thousands of other neurons. The high 
interconnectivity of neurons combined with their complex morphology 
results in tangled 3D brain networks that are difficult to analyze (see 
Fig. 4a). Different neuron types have unique morphological properties 
and connectivity preferences. Most brains of model organisms, such as 
the fruit fly (Drosophila Melanogaster), are further divided into spatial 
regions with distinct anatomical and functional properties. 
Brain networks and motifs. Connectomics datasets with tens or 
hundreds of thousands of neurons can be interpreted as large directed 
graphs, with neurons as nodes and synapses forming edges between the 
nodes. Recent advances in microscopy and computational neuroscience 
have revealed characteristic non-random patterns in neural networks of 
invertebrate and mammalian brains, especially in the cerebral cortex. 
These small recurring wiring patterns [35], termed network motifs, 
suggest the hypothesis that neuronal connections are arranged using 
some basic building blocks with hierarchical order [52] (see Fig. 3). 
Connectomics Data. Analyzing neuronal tissue at the level of synapses 
requires ultra-high-resolution imaging techniques such as serial-section 
scanning electron microscopy (SEM), which can produce more than 
1 petabyte of data for each imaged cubic millimeter [50] of tissue. 
In this paper, we demonstrate our visual motif query and analysis 
approach on the FlyEM hemibrain, one of the largest open-source 
connectomic datasets. It contains the entire central region of the fruit 
fly brain, including 21,000 proofread neurons classified into more than 
5,000 types, over 20 million synapses, 13 main brain regions, and over 
200 sub-brain regions [44]. This dataset is a major resource in the 
Drosophila neuroscience community and has led to exciting scientific 
discoveries [24, 27, 46]. Vimo uses the connectivity graph, 3D neuronal 
skeletons, and synapse locations of the hemibrain data (see Sec. 10). 

4 GOAL & TASK ANALYSIS 

The idea of Vimo originated from meetings with neuroscience collabora-
tors, who were excited about new EM datasets, but needed the means to 
analyze synapse-level connectivity. They want to identify and explore 
the morphological properties of motifs and synaptic chains without 
being overwhelmed by the 3D structure of intertwined neurons. At 
the same time, they need to see motifs in the original 3D space to 
understand the spatial relation of neurons and synapses. 

Following the design study approach by Sedlmair et al. [49], we 
identified a set of domain goals and tasks in semi-structured interviews 
with five experts from the Harvard Center for Brain Science, HHMI 
Janelia, and Columbia University. All scientists are internationally rec-
ognized experts in analyzing neuronal circuits reconstructed from EM 
images. Three are experts in Drosophila connectomics. We also held 
unstructured interviews at an international connectomics conference, 
where we presented an early prototype to refine our goals and tasks. 

4.1 Domain Goals 

The neuroscientists’ main objective is finding small biologically rele-
vant motifs in large neuronal networks. Further, they want to analyze 
interesting motif instances visually in more detail to fully understand 
how the motif’s connectivity relates to each neuron’s morphology. 
G1 - Motif identification in large brain connectivity data. Our 
collaborators want to search large brain networks for instances of a wide 
range of small motifs (≤ 8 neurons) based on neuronal connectivity 
and additional biological constraints on the involved neurons and 
synapses. Neuroscientists want to specify details such as the brain 
region a neuron trajects, the neuron type, or the number of synapses a 
neuron makes in a specific brain region. For example, a specific type of 
ring neuron in the fly brain is involved in action selection tasks [4], and 
scientists want to analyze motifs involving this specific neuron type. 
Biological constraints ensure the expressiveness of motif queries when 
studying such behaviors. Furthermore, neuroscientists are interested 
if a specific motif is exceptionally over or underrepresented in the 
connectome network. 
G2 - Analysis of motif instances. Since a motif search in a large brain 
network might result in dozens to thousands of hits, our collaborators 
need to be able to easily identify a small set of interesting motif in-
stances (i.e., MIs) and then analyze them in high-resolution. Neurons 
form complex 3D shapes, span long distances, and connect with up to 
thousands of other neurons. Therefore, our collaborators previously 
struggled to identify how a set of neurons forms a motif and how 
the abstract connectivity motif relates to the actual 3D anatomy of the 
MI (see Fig. 4). However, this understanding is crucial for following 
information flow along neurons. In particular, our collaborators have 
questions such as “Which branches and subbranches of the neuron 
make up the motif?”, “Are several spatially distinct parts of a neuron 
involved in the same motif?” (see Fig. 4bc), or “What is the anatomi-
cal context of involved neurons (e.g., in which brain regions are they 
located)?” (see Fig. 5c). 
G3 - Identification and analysis of motif chains. In addition to 
exploring single MIs, our collaborators are interested in exploring 
motif chains. Starting from a motif of interest and a seed neuron, they 
want to explore if the neuron is involved in different instances of 
the same motif. This allows scientists to investigate if a single neuron 
computes similar functions, even in multiple MIs. Furthermore, our 
collaborators are interested in motif-based synaptic chains. Starting 
from a seed MI, they want to follow chains of computation to see if the 
same motif is formed consecutively over several connected neurons (see 
Fig. 10a). This analysis can give more holistic insights into information 
flow (e.g., from visual input neurons to the central brain of Drosophila). 
Scalability Considerations. To analyze recently published large con-
nectomes [44, 50, 62] with the aforementioned goals, scalability is the 
main requirement of our application. Those datasets contain tens of 
thousands of neurons and millions of synapses. Therefore, the entire 
analysis pipeline, including data access, algorithms, and interaction 
metaphors, need to support large data and scale to future datasets. 



Fig. 5: Vimo workflow. (a) Users query for motifs based on a sketch and set domain-specific biological constraints, like connectivity strengths 
and anatomical regions of interest, for targeted interrogation of the brain network. (b) After querying the connectome for a motif, users select 
found MIs for further investigation. (c) While exploring motif neurons and synapses (red dots), (d) users can adjust the visualization to gradually 
highlight the connectivity of neurons using our focus&context technique. (d) Next, users can continue to explore multiple connected MIs. 

4.2 Tasks 

Based on the above domain goals, we derived a set of analysis tasks 
Vimo needs to support: 
T1 - Query for connectivity motifs. Scientists need a fast way to 
specify motifs and biological constraints for large graph queries (G1) 
without prior programming experience. 
T2 - Identify biologically-relevant motif instances. Scientists need to 
be able to explore query results to identify interesting MIs (G2). 
T3 - Explore the 3D structure of MIs. For an interesting MI, scientists 
want to explore the anatomy of its neurons and synapses in the context 
of the surrounding brain region (G2). 
T4 - Visually identify the relation between neuron morphology and 
motif connectivity. After their initial exploration of an MI, scientists 
need to identify the parts of the neurons that make up the motif and 
analyze the detailed connectivity of the motif instance (G2). 
T5 - Computationally and visually identify connected motif in-
stances. Starting from the neurons of a selected motif instance, scien-
tists want to explore whether the same neurons are involved in other 
instances of the same underlying motif (G3). 
T6 - Trace synaptic chains starting from seed MI. Starting from a 
seed MI, scientists want to identify and visually follow synaptic chains 
made up of repeating specific motifs (G3). 

5 Vimo DESIGN AND WORKFLOW 

Our main goal for Vimo is to provide neuroscientists with the means 
to easily explore the connectivity of connectomes and allow them to 
understand the network layout of neurons with their complex anatomi-
cal structure. Thus, we designed a workflow that offers intuitive user 
interactions and visualizations that highlight the connectivity of the 
data while keeping the anatomical data undistorted (see Fig. 5). 
Vimo Workflow. In collaboration with domain experts, we designed 
an interactive visual query interface based on sketching to search for 
network motifs in the data. The interface is aimed at domain experts 
with no programming experience and allows users to specify motif 
connectivity and biological constraints (G1). The main difficulty of 
connectivity analysis in high-resolution connectomic data is the com-
plexity of both neuron morphology and connectivity. Neurons are 
densely packed in brain tissue and often highly intertwined. Synapses 
between two neurons might be clustered or spread out along the length 
of the neurons. Therefore, Vimo offers a 3D view to display neurons and 
synapses of a selected MI in detail. This allows scientists to understand 
neuron shape and how motif neurons are intertwined. To support neu-
roscientists in the understanding of both morphology and connectivity, 
we designed a method for gradually highlighting neuronal connectivity, 
similar to continuous visual abstractions. Users can progressively focus 
on the underlying connectivity of the data while still retaining access 
to the morphology of neurons (G2). Vimo allows users to identify and 
follow interesting synaptic chains created by the repeated appearance 
of a motif. To reduce the search space for synaptic chains, we let users 
start with a seed motif or neuron, supporting user-driven data explo-
ration (G3). Finally, throughout the design of Vimo, we focused on 
scalability by using datasets hosted in the cloud and only downloading 
small subsets to the user’s machine during runtime (see Sec. 10). 

Fig. 6: Motif sketching interface. (a) Users draw nodes and edges 
of a motif and define biological constraints on the nodes and edges. 
Additionally, Vimo gives real-time feedback on the absolute count of 
a sketched motif in the dataset and indicates whether a motif is over-
or under-represented in the dataset (red label). (b) When searching the 
brain network for large motifs, Vimo warns users of potentially long 
runtimes using a red exclamation mark icon (b - top). 

6 INTERACTIVE MOTIF QUERIES 

In contrast to previous efforts in motif analysis that rely on program-
ming languages [33, 38], Vimo provides a visual sketching interface to 
create queries. This gives scientists an intuitive approach to search for 
motifs. Additionally, Vimo provides real-time feedback on the number 
of occurrences of a sketched motif in the brain network to guide the 
user during the analysis process (see Fig. 6a). 

6.1 Motif Sketching 

In Vimo, users search for motif instances by sketching an exemplar. 
They draw a set of nodes and edges to define the motif (i.e., neurons 
and the connections between them) (see Fig. 6), specify additional 
biological constraints, and inspect the results of their motif query. 
Defining Constraints. To create biologically meaningful queries, users 
can interactively set constraints on the nodes and edges of the motif 
sketch. Our query interface supports constraints on the neuron’s type, 
the spatial location and brain region of neurons and synapses, the 
strength of a connection, and the neuron’s ID (T1). For instance, 
when analyzing the hemibrain dataset, users can define one of over 
5,000 neuron types or trajectories through over 200 brain regions in 
the hemibrain dataset. We also introduce wildcard constraints that 
summarize certain families of neuron types to make queries more 
flexible. Scheffer et al. summarize all brain region constraints [43] and 
available neuron types [44]. Vimo offers an intuitive and expressive 
query builder interface to define one or multiple constraints per node 
and edge (see Fig. 6). Autocompletion of neuron types and brain 
regions further helps users select from thousands of available options. 
Guided Sketching. Deciding which motifs to study in greater detail 
is not always obvious to neuroscientists. During formative interviews, 
experts expressed interest in analyzing particularly common or rare 
motifs in the network. Therefore, as the user is sketching a new motif, 
we provide real-time feedback about the significance of the sketched 
motif. In particular, Vimo shows the number of occurrences of the motif 



Fig. 7: Overview of the Vimo user interface. (a) A motif sketch of a participant in the user study (see motif-p2-pilot.json at [57]) and (b) 
list view of resulting MIs. (c) The central view shows a non-simplified, full morphology 3D rendering of two MIs. (d) The multi-motif summary 
view visualizes the relationship between the selected MIs when following motif chains. (e) Users control the focus&context abstraction level 
using the interactive slider. Continuously simplifying the MI ensures preserving context between successive simplification steps. 

in the brain network and whether the motif is estimated to be over- or 
under-expressed (T2). Counting the number of occurrences of a motif 
in a large graph in real-time is computationally infeasible. Therefore, 
we use precomputed counts of motifs with up to five nodes using a 
subgraph enumeration technique [32] that leverages a parallel version 
of the Kavosh algorithm [26] on a high-performance compute cluster. 
At run-time, we perform a simple look-up to display the number of oc-
currences of a sketched motif (see Fig. 6). Enumerating all occurrences 
of motifs with more than five nodes is computationally infeasible, as 
the number of possible motif configurations grows exponentially with 
the node count [32]. Nonetheless, Vimo supports finding representative 
MIs for motifs up to the size of 8 by limiting the number of MIs that 
are returned to the user (see Fig. 7). We also indicate the over- or under-
expression of a motif in the brain network using a heuristic approach. 
We estimate a motif as over-expressed if its occurrence in the brain 
network is higher than in a random network. It is under-expressed if 
it occurs less frequently in the brain than in the random network. To 
analytically approximate the motif count in a random network, we build 
on a method [25] using Erdös models, a simple class of random graphs 
where each vertex-pair has a fixed probability of being connected by an 
edge. We indicate over- or under-expression with a red or blue badge 
in the sketching panel, respectively (see Fig. 6a). 
Running Motif Queries. Vimo automatically compiles the visual 
sketch into a DotMotif [33] string in real-time. Specifically, we convert 
a JSON representation of the motif sketch into a DotMotif query. Once 
users are satisfied with their sketch, we send the query string to a graph 
database to get a list of motif instances. Note that any graph database 
supporting DotMotif queries can be used. The graph database then 
returns a list of MIs fulfilling the properties of the sketch. This list is 
sorted based on the order in which the subgraph isomorphism search 
algorithm detects MIs. See Sec. 6.2 for the scalability of motif queries. 
Inspecting Motif Query Results. Vimo displays the results as a set 
of MIs in a list view (see Fig. 7b). To guide users in selecting a motif 
instance for further analysis, we show summarizing features for each 
neuron in an MI. In particular, we display the neuron’s type, ID, and 
proofreading status (T2). Clicking on an MI shows 3D models of the 
neurons and their synapses in the main view of Vimo (see Fig. 7c). 
Reproducing and Sharing Sketches. Users can import and export mo-
tif sketches as JSON files. This helps researchers reproduce their motif 
queries at later times and facilitates sharing of interesting discoveries 
with colleagues. A set of interesting motif sketches from the case study 
is available online [57] and in the supplementary material. 

6.2 Large Motif Queries 

Vimo’s motif sketching and interactive motif simplification scale to 
large motif instances (see Fig. 6b). However, subgraph isomorphism 
searches in large graphs are computationally expensive [32, 39], which 
becomes a factor as the number of motif nodes increases. For example, 
verifying the existence of a motif in a larger network is an NP-complete 
problem [10]. We use two strategies to limit the computational com-
plexity of queries to maintain runtimes suitable for interactive systems. 
First, users can set targeted biological constraints on the nodes and 
edges, reducing the search space significantly. For example, neurosci-
entists are interested in motifs involving external ring neuron (ExR1) 
types. The hemibrain dataset [44] contains four neurons of type ExR1, 
which drastically reduces the search space by only querying the neigh-
bors of those four ExR1 neurons. Second, users can limit the number 
of MIs returned by a query (see Fig. 7b). Keeping this number low 
allows the search algorithm to terminate early without finding all MIs 
in the network. Visually inspecting a small number of MIs is often 
satisfactory for exploratory or initial analysis. We use a heuristic on the 
number of nodes in the motif (e.g., ≥ 5 nodes) to estimate if a motif 
query will run longer than 20 seconds, in which case we warn the user 
with an exclamation mark icon in the sketching interface (see Fig. 6b). 

7 MOTIF VISUALIZATIONS 

Most connectome analyses require a detailed understanding of neuron 
wiring. However, due to the complex morphology of neurons, it is 
difficult to relate the motif connectivity to a 3D visualization of the 
neurons (see Fig. 4bc). Neither node-link diagrams nor planar visual 
encodings can accurately show spatial relationships between neurons 
(T3). 2D projections of neurons abstract their spatial entanglement, 
which is relevant to understand connectivity. Thus, we designed a 
focus&context method that gradually emphasizes motif connectivity 
in the 3D representation by pruning unimportant neuron branches and 
drawing visual links between connected neurons (T4) (see Fig. 8). 

7.1 Spatial Exploration 

First, Vimo supports interactive inspection of the 3D spatial morphology 
of all neurons of a motif instance (T3). We render neurons based on 
their skeletons to ensure scalability. Skeletons are simplified stick-
figure representations of neurons and are faster to download during 
runtime than meshes, as they require less data while retaining essential 
morphological details. For each skeleton node, Vimo uses the neuron’s 
diameter to adjust the thickness of the rendered tube, leading to more 



Fig. 8: Gradual Motif Highlighting. (a) In Vimo, users preview a simplified version of the MI and maintain spatial context, as branches set 
for pruning are colored in grey. (b) Once neurons have been fully pruned, (c) users explode the view using a slider to decrease the visual 
complexity caused by tangled neurons. (d) In the exploded view, Vimo progressively groups synapses and creates bundled links between pre- and 
post-synaptic sites, minimizing visual clutter. Distinct link bundles signify separate clusters of synapses between the purple and yellow neurons. 

accurate visual representations. To allow users to quickly identify a 
neuron’s role in the motif, we color each neuron based on its color 
in the motif sketch (see Fig. 7). For context and to enhance a user’s 
spatial orientation, the 3D view in Vimo can show the outlines of 200 
Drosophila brain regions, which are stored in Neuprint datasets [38]. 

7.2 Gradual Motif Highlighting and Abstraction 

Our visual abstraction approach contains three main steps, all aimed 
at gradually highlighting motif connectivity, to help users understand 
how neurons form a motif (T4). Users can gradually move between the 
steps by dragging a slider (see Fig. 7e), which results in a continuous 
animation from one highlighting-and-abstraction level to the next. 
Neuron pruning. First, we highlight motif connectivity by visually 
removing parts of a neuron that are not involved in the connectivity 
motif. Users can gradually peel away all parts of the neuron that are 
not in the motif, which reduces visual clutter and helps the user focus 
on the important parts of a neuron in relation to the motif (see Fig. 9). 

For each neuron in a motif instance, we start with a 3D skeleton 
representation (see Fig. 8a and Fig. 9a), which is interpreted as an 
undirected graph N = (V,E) with vertices V and edges E. First, we 
identify the set of skeleton vertices P ⊂ V which will remain even 
after the neuron is fully pruned (see Fig. 9c). The set S ⊂ V represents 
the spatial locations of motif synapses and is computed by mapping 
each synapse location to its closest vertex in V . Synapse locations are 
assumed to be part of the dataset. P is formally defined as 

P = {p ∈ V | ∃a,b ∈ S : p ∈ path(a,b)} (1) 

In other words, a vertex p ∈ V is in P if there exists a path between 
any two motif synapses a and b that contains p. P represents neuron 
branches with synapses involved in the motif (T4). Next, we compute a 
distance value d for each vertex v ∈ V to P, by calculating the geodesic 
distance g to its closest neighbor in P: 

d(v) = min
p∈P

(g(v, p)) (2) 

This allows us to gradually prune non-motif branches based on d by 
moving a slider until only branches with motif synapses remain (see 

Fig. 9: Motif pruning. Vimo gradually emphasizes neuron connec-
tivity in MIs. We first show the full 3D morphology (a) and subse-
quently prune all branches unrelated to the motif (b) until only essential 
branches remain (c). In the process, neuron connectivity becomes visu-
ally more prominent (colored circles). 

Fig. 9bc). Vertices with higher distance values d are pruned earlier than 
vertices with smaller values. After an MI is fully pruned, the user sees 
the essence of all neurons making a motif (T4) (see Fig. 9c). 
Exploded view. In the second step, we further reduce the visual com-
plexity resulting from entangled neurons. We spatially pull all neurons 
apart into an exploded view after all non-motif branches are pruned (see 
Fig. 8c). This allows scientists to study the morphology and branch-
ing patterns of individual neurons and better visualize where synapses 
involved in a motif are located. To evenly distribute the neurons in 
space, we use the Saff and Kuijlaars algorithm [42] to compute the 
directions of the explosion. The algorithm evenly distributes n points 
on a unit sphere. We then compute an explosion direction for each 
neuron by calculating a vector from the sphere’s center to one of the 
n sampled points. In the exploded view, all pre- and post-synaptic 
sites between motif neurons are marked with spheres colored like their 
synaptic partner neuron (see Fig. 8c). This helps the user quickly grasp 
the neurons’ connectivity, even as the neurons are spatially apart (T4). 
Connectivity Visualization. In the third step, we highlight connectivity 
in the exploded view inspired by context-preserving visual links [53]. 
We initially draw lines between the pre- and post-synaptic sites of the 
neurons (see Fig. 1e and Fig. 8d). We use two strategies to highlight 
important connectivity features and avoid visual clutter. First, we use 
hierarchical clustering of synapses and 3D bundling to aggregate lines. 
We chose hierarchical bundling as it can visualize different levels of 
synapse clusters and how they are distributed along the neurons. Based 
on feedback from our collaborators, we cluster synapses based on their 
spatial proximity to the neuron and which neuron they connect to. The 
user can set the bundling strength via the focus&context slider. As an 
alternative to the clustering approach, the user can also decide to only 
view connecting lines for user-selected synapses. 
Design Alternatives. In an initial version of Vimo, we gradually moved 
from the pruned neuron view all the way to a node-link view by abstract-
ing neurons into nodes and collapsing synapses to links. We hoped 
this would help scientists better visualize the relationship between the 
motif and the involved neurons. However, we ultimately abandoned 
this idea since scientists could already see the abstract motif in the 
sketching interface and had no use for such a simplified view. Addition-
ally, based on feedback from visualization experts, we implemented a 
depth of field (DOF) effect to improve depth perception. However, dur-
ing user testing, we found that DOF decreased users’ ability to follow 
long traces of neurons, as branches outside the focal plane are blurred. 
Therefore, users frequently adjusted the focused region to analyze an 
entire motif. Thus, we did not use the DOF effect during the evaluation. 

8 MOTIF-BASED SYNAPTIC CHAINS 

Examining an individual motif instance (MI) offers a limited perspec-
tive on the connectivity of the associated neurons. To investigate how 
an MI is integrated within a broader network, researchers must visualize 
multiple interconnected MIs (T5, T6) (see Fig. 10). For example, when 
exploring pathways from visual input neurons to the central complex in 
Drosophila, conducting a multi-motif analysis proves to be pertinent. 



Fig. 10: Visualizing multi-motifs. (a - c) Vimo supports exploring connections between multiple motif instances. For instance, the set of neurons 
in (a) form a circular connectivity motif three times. Vimo supports tracing such synaptic chains by repeatedly searching for instances of the same 
motif. (d) Vimo only highlights one MI at a time and defocuses all other MIs in grey. (e) Our focus&context technique scales to multiple MIs. By 
dragging the interactive slider (see Fig. 7e), we peel unrelated branches of all MIs to emphasize neuron connectivity (see blue circle). 

8.1 Multi-Motif Analysis 

Vimo supports the analysis of synaptic chains in two ways: 
Neuron-centric analysis. First, domain experts are interested if a 
neuron forms the same motif with multiple partners (T5). For instance, 
in Fig. 10a, neuron A participates in two motif instances (MI-1, MI-2). 
Users can specify a seed neuron in the motif sketching interface by 
setting a neuron ID as a constraint to ensure that only motif instances 
involving that particular neuron are returned. 
Synaptic pathway analysis. Second, neuroscientists are interested in 
following synaptic pathways that repeatedly include a sketched motif. 
For example, MI-1, MI-2, and MI-3 in Fig. 10 form such a synaptic 
pathway. To query for those, users start from a seed motif and set the 
ID of a sink neuron in the motif instance to a source neuron in the motif 
sketch through a context menu (T6). This approach facilitates the con-
tinuous construction of motif-based synaptic pathways downstream or 
upstream from a seed motif instance. Additionally, multi-motif analysis 
serves as a proxy for examining large motifs comprising numerous neu-
rons. When it is computationally infeasible to search a brain network 
for instances of a large motif, users can alternatively construct the large 
motif iteratively by using smaller motifs as building blocks. 

8.2 Multi-Motif Visualization 

Vimo uses three strategies to visualize multiple MIs. 
Connectivity Summary. Vimo provides an abstract overview of the 
connectivity of all selected MIs in a small node-link diagram (see 
Fig. 7d). The nodes and edges of the focused MI are colored, while all 
other elements are grayed out. This overview can help the user to stay 
oriented in the 3D view (T5). Selecting an edge in the summary view 
also highlights all corresponding synapses in red in the 3D view and 
the corresponding edge in the sketch panel (see Fig. 10). 
Highlighting motif instances. Inspecting even one MI in 3D can 
be overwhelming due to the complex morphology of neurons. Vimo 
always focuses on a single MI, while all other unrelated neurons are 
grayed out to highlight the neurons of the MI in focus (T6). Users can 
quickly switch focus by clicking on a different MI in the list view. 
Multi motif abstraction. We designed the continuous focus&context 
approach (see Sec. 7.2) to scale to multiple MIs. For each MI that a 
neuron participates in {MI1, ..., MIn}, our pruning technique computes 
a set of distance values D(v) = {d1(v), ..., dn(v)} for each vertex v ∈ V 
using Equation 2 (see Sec. 7.2). Thus, each vertex is assigned the 
minimum computed distance to avoid over-pruning an MI. 

d(v) = min(D(v)) (3) 

Pruning and exploding multiple MIs simultaneously helps experts to 
better understand the wiring of a synaptic chain (T5, T6) (see Fig. 10e). 

9 USER INTERACTIONS 

We offer several interactions for visual motif analysis. 
Focus&context slider. An interactive slider controls the continuous fo-
cus&context approach for motif connectivity highlighting (see Fig. 7e) 
to maintain spatial context between consecutive views. First, dragging 
the slider starts pruning the MI continuously. After the MI is fully 

pruned, moving the slider further explodes the neurons in the 3D view. 
Finally, in the exploded view, users can control the bundling strength 
of the connectivity links using the slider (see Fig. 1e). For more details 
about our focus&context approach, see Sec. 7.2. 
Synapse highlighting. In Vimo, synapses are drawn as small spheres 
between the pre- and post-synaptic sites of the connected neurons. 
Visually highlighting all synapses between two neurons provides a 
simple yet effective visual clue to study where neurons connect (T4). 
A set of synapses connecting a pair of neurons is highlighted by either 
clicking on a single synapse sphere in the 3D view or by selecting an 
edge in the sketching panel or summary view (see Fig. 7d). 
Showing brain regions. Interactively rendering the outlines of anatom-
ical brain regions (e.g., Central Complex in Drosophila) provides ori-
entation and allows users to verify if a selected MI adheres to the 
constraints specified in the sketch (T3). We show semi-transparent 
surfaces of the brain regions overlayed to the 3D renderings of the 
neurons. Users can interactively select which brain regions to show and 
quickly enable and disable the renderings. 
Graying out non-motif branches. While neuron pruning (see Sec. 7.2) 
helps remove unrelated branches to an MI, it removes context about 
the motif neurons that might be necessary during analysis. Therefore, 
Vimo allows graying out all non-motif branches of an MI (see Fig. 8a) 
to highlight important parts of the neurons and show the context of all 
other neuron branches by toggling a checkbox in the UI (T3, T4). 
Further Analysis. Once scientists identify interesting motif character-
istics in their exploratory analysis, they need to perform an in-depth 
analysis on a set of MIs. This involves statistical analyses, such as study-
ing the distribution of all synapses on a neuron (not just motif synapses). 
Vimo supports this step by integrating tightly with neuPrint [38], which 
provides a set of tools for general neuron analysis. Users can access 
neuPrint data for all neurons of an MI by using the context menu. 

10 DATA AND IMPLEMENTATION 

Data. Vimo requires a connectivity network and proofread reconstruc-
tions of neurons in the form of 3D skeletons and synapses, including 
their spatial locations and pre- and post-synaptic partners. Meta-data, 
like neuron types and anatomical brain regions, are used to increase the 
expressivity of motif queries but are not required. Precomputed motif 
counts can guide motif sketching (see Sec. 6.1). All other computations 
can be performed during runtime. Vimo expects data in the neuPrint 
format [38]. neuPrint currently hosts five datasets (three hemibrain ver-
sions [44], the fib19:v1.0, and the MANC dataset [54]). New datasets 
are expected on the same platform soon. For the development and 
evaluation of this project, we used the hemibrain v1.2.1 dataset, which 
includes 21, 000 proofread neurons and 20 million synapses. 
Scalability. Interactively exploring tera- and petascale connectome 
datasets requires scalable tool architectures. We leverage different data 
representations of neuronal circuits with varying memory requirements 
to achieve scalability. For instance, the electron microscopy imaging 
data of the hemibrain dataset is 26 TB in size [44]. In contrast, the skele-
ton representations of the reconstructed neurons require only ∼10 GB, 
and the pure connectivity graph compresses the data to ∼25 MB [44]. 
As a result, the data size required for certain analyses is reduced by a 



Fig. 11: Vimo evaluation examples and tasks. (a) In the exploratory 
case study, a participant explored a circular connectivity motif between 
visual input neurons. By simplifying the motif using the focus&context 
technique, they could identify a synapse cluster; See the colored circle 
in (a) and (b). (c) In Task 1 of the qualitative user study, participants 
were asked to sketch this known biological motif between ExR neurons 
and other neurons in the ellipsoidal body (EB) of Drosophila [24]. 

factor of a million by transforming the imaging data into a connectivity 
network. We exploit the different memory requirements by carefully 
choosing the data representation for each step of the analysis workflow. 
For instance, Vimo queries the compact connectivity network for motifs. 
Based on the detected and selected MIs, Vimo downloads a small set 
of the neuronal skeletons and synapses from the neuPrint server [38]. 
Vimo then uses an optimized web-based renderer to display those neu-
ronal skeletons interactively. We only send skeleton vertices and edges 
to the GPU and use image-based rendering to generate visual primitives, 
like spheres and cones, in the fragment shader. Thus, we avoid costly 
data transfers between the CPU and the GPU. Hence, Vimo can be used 
on consumer-level hardware without RAM and GPU requirements. 
Implementation. Vimo is implemented as a web application using a 
React-based client and a Python-based server. Vimo builds on software 
libraries like NaVis [45] for data processing and a modified version of 
the WebGL-based SharkViewer [61] for 3D rendering. The hemibrain 
dataset [44] is hosted remotely in the neuPrint ecosytem [38]. Motif 
sketching is implemented using the Paper.js library. Vimo translates the 
visual sketch to an optimized Cypher query [17] using the Dotmotif [33] 
language as an intermediate step. This query is sent to a remote graph 
database to determine a list of MIs. Vimo is open-source [57], and we 
offer instructions for users in our tutorials. We also have released a 
domain-agnostic React component [9] for motif sketching to lower the 
entry threshold for motif analysis across disciplines. 

11 EVALUATION 

We report on an in-depth case study and qualitative user study to evalu-
ate the usability and usefulness of Vimo. 
Participants. We evaluated Vimo with 7 experts (P1 - P7, 3 male, 4 
female) from the Harvard Center for Brain Sciences and HHMI Janelia. 
Two participants are also co-authors. To limit participants’ time com-
mitment, three participants performed the case study, and the remaining 
four participants completed the user study. All participants are experts 
in analyzing neuronal circuits reconstructed from EM image data, and 
four are experts in Drosophila connectomics (6 postdoctoral researchers 
and 1 Ph.D. student in neuroscience). None of the participants cur-
rently use interactive tools for motif analysis, even though 6 out of 7 
participants rated motif analysis as important for their research. 
Setup. We met with each participant for 90 minutes in person or on a 
Zoom video call. After a short introduction to the tool, all users, who 
had no hands-on experience with Vimo, steered the tool themselves. We 
asked all participants to think out loud to capture their thoughts. 

11.1 Case Study: Exploratory Analysis 

We report on an exploratory case study with three domain experts 
specializing in analyzing neuronal circuits in the Drosophila brain. We 
provided no specific tasks, as we wanted to test what types of analyses 
an experienced neuroscientist would conduct. We describe two motifs 
in detail that were analyzed by the experts during the session. 
Feedforward outputs of ExR neurons. First, the expert searched 
for a familiar connectivity motif to verify the tool’s reliability. They 

started by sketching a feed-forward motif involving an external ring 
(ExR) neuron, an ellipsoidal body (EB) neuron, and a neuron without 
any constraints (T1). The motif sketch can be reproduced by loading 
case-study-motif-1.json, available on our GitHub repository [57]. 
The expert iteratively refined their sketch by adding more constraints 
until they found an MI that matched the desired characteristics. Next, 
they selected an MI that included one ExR neuron and two EPG neurons 
(Ellipsoid body - Protocerebral bridge - Gall) (T2). After inspecting 
the 3D renderings, they used the summary view to highlight synapses 
between the ExR neuron and both EPG neurons (see Fig. 7d). The 
expert indicated this helped confirm that the ExR neuron forms synapses 
with each EPG neuron on different arbors (T3). They decided to 
study this observation in more detail using the focus&context slider 
and first pruned all unrelated motif branches of the neurons. Next, 
they iteratively moved back and forth between the non-exploded and 
exploded views to understand how the neurons entangle at areas of 
strong synaptic connectivity. Next, they studied the bundled lines 
between the pre-synaptic sites of the ExR neuron and one of the EPG 
neurons. They stated that neuron pruning and the exploded view helped 
them find a previously unknown connection and quickly identify which 
synapses might be considered biological noise (T4). Finally, the expert 
was interested in performing a neuron-centric multi-motif analysis 
(Sec. 8.1) of the currently selected MI and other neurons expressing the 
same pattern. Specifically, they wanted to study if there are other MIs 
of the sketched feed-forward network that also involve the currently 
selected ExR neuron and one of the selected EPG neurons. Hence, they 
searched the query results for a second MI including these neurons, 
and added it to the 3D view (T5). They frequently switched the focus 
between both MIs to better understand their spatial relationships and 
used the multi-motif abstraction (Sec. 8.2) to compare the connectivity 
of both MIs. 
Circular connections in visual input neurons. Next, the expert 
sketched a circular motif of three visual input neurons, specifically 
tuberculo-bulbar (TuBu) neurons and ellipsoid body ring (ER) neu-
rons (T1). The motif sketch and the studied motif instance are 
available for reproducible results (case-study-motif-2.json and 
case-study-motif-2-instance.json at [57]). Based on the motif 
counts in the sketch panel, the expert found that circular connections are 
underrepresented in the dataset, making it interesting for detailed anal-
ysis (T2). After analyzing an MI in 3D using Vimo’s focus& context 
technique, the expert identified that all synapses are clustered tightly at 
a specific location (T3, T4) (see Fig. 11ab). Based on this observation, 
the expert was interested if other neurons of the same type formed 
the same motif but expressed stronger connection strengths. Hence, 
they increased the synapse strength constraints in the sketch and found 
another MI with an even stronger synapse cluster close to the previously 
observed cluster (T1, T2). As a final step, the expert used the exploded 
view to study the internal structure of the cluster and inspected the 
bundled lines to learn how the circular motif is expressed within the 
cluster (T4). Overall, the expert stated that neuron pruning and the 
bundled connectivity links helped them quickly judge if synapses are 
clustered tightly or distributed randomly on motif neurons. 

11.2 Qualitative User Study 

To evaluate the usability and usefulness of Vimo in a qualitative user 
study, we asked participants to perform two tasks: motif sketching and 
analyzing motif connectivity with our focus&context approach. 

11.3 Task 1: Motif Sketching and Querying 

We asked participants to sketch and query for a connectivity motif 
recently discovered (T1) [24]. The motif describes ExR neurons and 
other EB neurons that form connections inside and outside the EB. This 
motif contributes to the context-dependent action selection behavior 
of Drosophila. A correct motif sketch and related motif instance are 
available online to reproduce results [57]. We provided a schematic 
illustration of the motif and its constraints (see Fig. 11c) to all par-
ticipants. Sketching the connectivity between the motif neurons was 
straightforward for all participants while defining node and edge con-
straints involved a learning curve. Two participants needed help from 
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Fig. 12: User ratings. We show neutral responses in gray, positive 
responses in green, and the percentage of users who (strongly) agreed. 

the study conductor to specify appropriate constraints. We observed 
that the performance of defining constraints depends on the partici-
pant’s familiarity with fly brain anatomy. Participants familiar with the 
dataset could easily identify how to translate the instruction ’outside 
EB pathway’ into an edge constraint. Our survey results show that 
all four study participants found the motif sketching interface useful 
(see Fig. 12, Q2). However, for querying large motifs involving more 
neurons (e.g., n ≥ 6), only 3 out of 4 participants found motif sketching 
useful because of visual clutter in the sketching interface. During our 
pilot study, we found that neuron-type wildcards can improve the util-
ity for defining node constraints (Sec. 6.1). Therefore, we added this 
functionality that was then widely used for the remainder of the user 
study. Additionally, participants suggested changing synapse strength 
constraints to a default of 10 synapses to avoid repetitive interactions. 

11.4 Task 2: Analyzing Motif Connectivity in 3D Data 

In the second task, we provided users with a motif and the 3D view 
of a motif instance and asked them to identify the main parts of the 
motif neurons connected in the 3D data (T3, T4). We tested two 
conditions: In the first condition, participants had access to the full 
functionality of Vimo, including our focus&context technique. In the 
second condition, participants could not use our focus&context method. 
We used two MIs describing feedback loops of CX neurons [57]. We 
counterbalanced between both conditions. Every participant had to 
perform the task with both conditions. To test their understanding of the 
motif connectivity in 3D, we asked participants to draw an illustration of 
the neuron branches involved in the motif and their connections for both 
conditions. We observed that participants frequently used the interactive 
slider (see Fig. 7e) to prune MIs maximally and to toggle between the 
non-exploded view and the exploded view to get a better view of neuron 
entanglement. Therefore, using our focus&context technique led to less 
cluttered illustrations by the participants, indicating a clearer and better 
understanding of motif connectivity due to interactive simplification. 
We show an example user illustration in the supplemental material. 
Additionally, we collected survey responses from all participants about 
our interactive motif abstraction approach (see Fig. 12), demonstrating 
that neuron pruning (Q3, Q5), synapse highlighting (Q4), and the 
exploded views (Q6) are among the most effective interactions of Vimo. 

11.5 Key Findings 

Vimo leads to fast, iterative analysis. We observed that users often 
queried a specific motif but forgot to specify certain constraints in 
the motif sketch. Vimo allows users to quickly iterate on their motif 
sketches and queries, leading to more relevant motif analyses. 
Biological constraints are essential for motif analysis. We found bio-
logical constraints to be essential for expressive motif queries. Specif-
ically, wildcards for neuron types were perceived well, constraining 

a neuron to a group of types. For instance, the ExR* type requires a 
neuron to be in any of the ExR1 - ExR8 types. 
Exploded views improve spatial motif understanding. The gradual 
transition of neurons into the exploded view helped users understand 
how neurons entangle. Understanding the complex entanglement is 
crucial for analysis but also an obstacle for mentally mapping the motif 
graph structure to the 3D visualizations of neurons. 
Vimo improves the state of the art. All study participants agreed 
that Vimo improves their motif analysis workflow. Users particularly 
liked the interactive motif sketching, neuron pruning, and synapse 
highlighting for their visual analysis in 3D (see Fig. 12, Q2, Q3, Q4). 

12 DISCUSSION 

User expertise for high-resolution connectivity analysis. It was chal-
lenging to find qualified experts for the user study. Many neuroscience 
labs are interested in connectivity analysis at the nanometer scale, how-
ever, few have actually done it. Datasets have only recently become 
available, and with a lack of scalable computational tools, many sci-
entists have not yet started on this endeavor. We hope that Vimo can 
reduce the barrier of entry for this type of research and attract more 
labs and researchers to analyze high-resolution connectivity. 
Limitations. Vimo focuses on the interactive analysis of motifs and 
quick, iterative refinement of motif queries. Therefore, the strength of 
our tool is in analyzing relatively small motifs with a limited number 
of nodes (n ≤ 8). We determined this threshold through iterative test-
ing. While our visualization approach scales to larger motifs, running 
large motif queries becomes computationally expensive. Such large 
queries potentially require hours of computation time, which would 
hinder the interactivity of our tool. Furthermore, while Vimo supports 
the visual analysis of multiple connected motif instances, large-scale 
comparisons of motif instances distributed across the entire dataset are 
not yet supported. Finally, in Vimo’s current design, researchers need 
a prior hypothesis about relevant motifs. In other types of analyses, 
researchers start from a fixed set of neurons and are interested in the set 
of expressed connectivity motifs. This exploratory approach is inverse 
to the workflow in Vimo and not yet supported. 
Tradeoff between accuracy and visual abstractions. A main design 
decision of our approach is not to distort neuron anatomy but rather 
enhance the user’s perception of the motif connectivity in the original 
data. Many previous approaches have focused on visual abstractions 
that simplify neuron anatomy [1, 36]. We take a complementary ap-
proach and focus on highlighting connectivity in the original data. This 
comes at the cost of a higher cognitive load than using simplified 2D 
representations. However, it allows scientists to better understand the 
detailed spatial make-up of an MI. 

13 CONCLUSION AND FUTURE WORK 

Vimo takes a first step towards visual motif analysis for nanoscale brain 
data. The core idea of our approach is to enable quick and intuitive 
sketching of interesting motifs and to allow specifying biological con-
straints. We support a detailed motif analysis in the original 3D space, 
using a focus&context approach. We improve understanding of the data 
by gradually highlighting motif connectivity relative to the 3D structure 
and arrangement of neurons and synapses. Vimo is a key stepping stone 
towards neuronal pathway analysis at scale, where structural and func-
tional data are combined for a better understanding of the brain. While 
Vimo is targeted to a specific audience, our motif sketching and novel 
simplification method for spatial graphs are domain agnostic. Specifi-
cally, the focus&context approach can, in principle, be adapted to any 
spatial graph data where nodes exhibit complex spatial morphology. 

In the future, as more large-scale and proofread datasets become 
available [12–14,34,44,50,58], we want to extend Vimo to support data 
from other organisms, such as mice and humans. Vimo is currently be-
ing used at HHMI Janelia to analyze the next generation of connectome 
datasets. With these new datasets, inter-specimen comparative motif 
analysis will be within reach, posing new challenges for visualization. 
Thus, future tools should support analyses into whether similar neurons 
across specimens form similar motifs. 
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