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Abstract—We present VoxAR, a method that facilitates an
effective visualization of volume-rendered objects in optical see-
through head-mounted displays (OST-HMDs). The potential of
augmented reality (AR) to integrate digital information into the
physical world provides new opportunities for visualizing and
interpreting scientific data. However, a limitation of OST-HMD
technology is that due to its holographic nature, the rendered
pixels of a virtual object interfere with the physical world, making
it challenging to perceive the augmented virtual information
accurately. In this work, we address this challenge by presenting
a two-step approach. First, VoxAR determines an appropriate
placement of the volume-rendered object in the real-world scene
by evaluating a set of spatial and environmental objectives,
managed as a set of user-selected preferences and pre-defined
constraints. We achieve a real-time solution by implementing the
objectives using a GPU shader language. Next, VoxAR adapts
the colors of the volume-rendered object based on the real-world
placement region. To this end, we introduce a novel method
that optimally adjusts the input transfer function colors such
that the resulting volume rendering has pixel colors discernible
with respect to the background while simultaneously maintaining
the perceptual relationship between the modified colors and
its mapping to data intensity values. Finally, we present an
assessment of our approach through objective evaluations and
subjective user studies.

Index Terms—Adaptive Visualization, Situated Visualization,
Augmented Reality, Volume Rendering.

I. INTRODUCTION

THE transformative ability of augmented reality (AR) to
fuse the digital world of bits with the physical world of

atoms has provided new opportunities to visualize 3D spatial
scientific data. Over the decades, there have been significant
advances in methods and techniques for virtually presenting
information to users. However, in contrast to virtual reality
(VR) and mixed reality (MR) technologies, optical see-through
(OST) AR has only been sparsely adopted for scientific
visualization [1]. This can be attributed to a fundamental chal-
lenge in OST-AR design: augmenting virtual content onto the
user’s optical field-of-view (FoV) blends the projected virtual
object with the physical environment. As such, it is possible
to inaccurately perceive the rendered pixels of the virtual
content, which is a critical limitation in scientific visualization.
The full potential of AR is realized when virtual data is
effectively visualized with respect to its referent in the physical
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space. Towards this goal, methods have been developed for
the intuitive placement [2], [3], visibility enhancement [4]–
[7], and color correction [8], [9] of virtual objects rendered
in OST head-mounted displays (HMDs), albeit as separate
objectives [10].

A fundamental utility of volume rendering visualization
is exploring and interpreting volume data. Typically, this is
achieved using transfer functions (TFs) that map the intrinsic
values of the data to a spectrum of optical properties, such
as color and opacity. In terms of visual perception, most
existing AR techniques are not adequately designed to address
the challenges of visualizing volume-rendered objects. This
motivated us to design VoxAR – a method for augmenting
volume-rendered objects in OST-HMDs that adapts to real-
world surroundings and adjusts TF colors to effectively vi-
sualize scientific data. Specifically, VoxAR adopts a two-fold
approach: first, it determines an optimal position for displaying
a virtual object in the user’s FoV, based on user-defined
preferences, and second, it adjusts the colors of the TF to
distinguish the rendered volume from the background.

The placement of a virtual object in the scene can signif-
icantly impact data understanding and decision-making [11].
Unlike a controlled desktop setting, the real-world serves as
the virtual canvas for AR visualizations. Due to its dynamic
nature, spatial locations of virtual objects cannot be pre-
calculated, and must be determined in-situ. Existing frame-
works and toolkits for MR [3], [12] adaptively place virtual
objects in the scene by solving a set of rules and user-
defined semantic preferences, such as distance between the
virtual object and its physical referent, its position from the
center of the FoV, and surface magnetism. To improve the
visual perception of data in OST-AR, we additionally evaluate
environmental factors from the scene, such as light sources,
that flush the displayed projection from the HMD, and the per-
ceptual color difference between the real-world backdrop and
TF colors. VoxAR is designed using GPU shaders that evaluate
all candidate 3D spatial locations in the FoV in parallel and
solves an optimal location that best satisfies a composite set of
user-defined semantic preferences, minimizing environmental
limitations.

Following placement, the colors of the input TF may require
further adjustment so that the pixel colors of the volume-
rendered object are discernible with respect to the background
region. Existing solutions to alleviate the blending of virtual
objects with the physical world can be broadly categorized
into contrast enhancement [4], [5], [9] and re-colorization [13]
techniques. However, unlike the nature of the virtual objects
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addressed in most existing techniques, where colors broadly
indicate the presence of an attribute, the visual output from
volume rendering enables reasoning and understanding about
the data attributes through a perceptual mapping of defined
TF colors to those of the rendered output. In VoxAR, we
introduce a novel approach to search for an optimal shift in the
original TF that enhances the color perception of the resultant
volume-rendered object against the real-world background
while maintaining the visual characteristics for mapping the
data attributes. Rather than post-processing, we perform the TF
function enhancement prior to the volume rendering pipeline.
Specifically, we have designed an objective function that shifts
the input TF in the CIE L∗a∗b∗ (CIELAB) space such that
it satisfies a set of constraints designed to (1) maximize the
visual color difference between the TF spectrum and the
background colors, (2) maintain color properties similar to
the input TF, and (3) ensure a valid L∗a∗b∗ to RGB-space
transformation. Given the 3D search space, we use CMA-
ES [14] as a solver to find the TF color intervals with minimum
objective cost.

VoxAR is developed as an end-to-end system in Unity3D
game engine for Microsoft Hololens2 OST-HMD. We demon-
strate our results by using examples of volume datasets with
TF presets from widely used volume rendering applications.
To evaluate the effectiveness of our approach, we conduct
user studies and show that VoxAR significantly enhances
a user’s ability to perceive and analyze volume-rendering
visualizations in AR.

In summary, We define our contributions as follows:
• an end-to-end OST-AR framework for the placement and

adaptive visualization of volume-rendered objects,
• a real-time implementation for solving an optimal place-

ment based on user preferences while minimizing color
overlap with the real-world surroundings,

• a novel method to adjust the TF color based on back-
ground colors while preserving the perceptual mapping
between volume data attributes and the input TF.

II. RELATED WORK

In Sec. II-A, we review existing works on adaptive virtual
object placement and systems that have formalized the goal as
a constraint system, and in Sec. II-B we discuss techniques that
improve color perception in AR, and specifically OST-AR by
either performing contrast enhancement or re-colorization of
the virtual object. Exploring these related works, we observe
that, to the best of our knowledge, (1) placement and color
constraints have not been effectively explored as a coupled
problem, and (2) these works do not satisfactorily address the
challenges of volume rendering visualization.

A. Visualization and Object Placement

In context-aware mixed reality, the virtual experience dy-
namically adapts to context-specific information. The informa-
tion considered as context can vary significantly depending on
the desired goals of the application. For example, contextual
information can be derived from depth information: Google’s
DepthLab [15] utilizes depth information to create believable

interactions with the environment. AR objects can be placed
behind or physically interact with real-world ones. Microsoft’s
FLARE [16] analyzes a scene to generate location-specific
AR layouts based on detected geometry and surfaces. Position
or location-based data can also provide context. Systems
for situated visualizations, such as SemanticAdapt [17] and
RagRug [18] modify virtual objects based on semantic as-
sociations with real-world physical objects. VoxAR utilizes
a context-aware approach, generating scene-specific candidate
locations for placement based on color and depth informa-
tion, and by evaluating spatial and environmental objectives
managed as a set of user-selected preferences and pre-defined
constraints.

Many mainstream AR authoring systems provide the ability
to specify objectives for AR objects to determine their be-
havior automatically. Microsoft’s Mixed Reality Toolkit [19]
includes a number of solvers that compute the position and
orientation of AR objects based on which kinds of solvers are
attached (e.g., surface magnetism, constant view size, etc.)
and a predetermined algorithm for how to evaluate them.
Unity MARS [2] uses Reasoning APIs to collect information
about the scene and extract it into a higher-level database,
where database objects have special semantic information
stored as traits. Users can construct and attach placement-
related goals called conditions to AR objects. These conditions
evaluate real-world placement locations in the database based
on how well the corresponding traits satisfy the conditions.
Evangelista et al. have developed Adaptive User Interfaces
Toolkit (AUIT) [3] that allows users to create and attach
goals to objects to determine their position and orientation.
Instead of providing a database, it allows users to customize all
aspects of the placement process. Users can hook into existing
abstracted data sources, write their own objectives for AR
objects, determine what kinds of solvers to use and when to
trigger them, and how to transition between changing states.
Each of these tools can handle goals relating to transform-
related properties of AR objects. In this work, we extend
the scope of the placement objectives to address the visual
properties of the object or the scene. For instance, in our
case, the transfer function used to render the virtual object
and factors such as avoiding occlusion, textured backgrounds,
and light sources. Our approach provides a novel technique
for incorporating such image-based objectives alongside spa-
tial objectives, taking advantage of specialized shaders for
increased efficiency.

B. Visualization Color Enhancement

Solutions to alleviate color-blending can be divided into
hardware [20], [21] and software-based methods. For the
scope of this paper, we describe software-based techniques
here. Existing works that address color blending in OST-
HMDs [22] can be broadly categorized as color correction
and visibility improvement solutions. Color correction involves
sensing background colors and subsequently subtracting them
from the colors of the virtual content [8]. However, such
compensation typically results in a decrease in brightness. For
improved color contrast, Hincapi et al. [9] have developed
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Fig. 1. An illustration of the VoxAR pipeline. For a volume to be rendered using an input TF function, in a user’s real-world FoV, VoxAR first determines
an optimal placement. This is evaluated based on an objectives selection set, which the users opt for from our formulated list. The placement scene is then
used to adjust the input TF such that the resultant volume rendering facilitates an effective visualizing experience.

SmartColor, a real-time algorithm that performs background
subtraction in the CIELAB space using GPU shaders. The
work is primarily for text visibility, and a real-time solution
is achieved by discretizing the color space, which does not
adequately capture the full TF spectrum. For more of an
adaptive approach, Fukiage et al. [7] have introduced a frame-
work for measuring the visibility metric needed to predict
the visibility of semi-transparent virtual objects against any
background. A major limitation of this work regarding TF
colors is that their approach only analyzes luminance and does
not consider color-opponent channels. This is more so because
their algorithm is focused on solving for 50% transparency,
while in our case, a volume-rendered object can have varying
opacity values. A recent work closest to our goals is that of
Zhang et al. [4]. In this work, the authors present a constraint-
based system that aims to preserve the contrast between
virtual objects and the background and maintain consistency
with the original displayed color. However, their approach is
threshold-intensive. That is to say, for effective results, the
right hue thresholds need to be adjusted, especially for varying
backgrounds and TF colors.

While there have been works to improve the quality of
volume rendering in video see-through AR [23], [24], to the
best of our knowledge, no work has sufficiently addressed the
challenge of color correction and visibility improvement for
volume rendering visualization in OST-AR. Most approaches
address the blending challenge as a post-processing problem,
whereas we have designed VoxAR to solve the TF color
optimization as a step prior to the rendering process. Moreover,
for techniques that solve color enhancement in the CIELAB
color space, we noticed that most works assume a valid and
correct projection of their solution in the CIELAB space to
RGB, whereas VoxAR ensures this validity and perceptually
meaningful conversion as part of its constraint. Conclusively,
in reviewing works for AR, VoxAR is a novel approach
that combines spatial placement and color adjustment as
complementary solutions for achieving an effective immersive
visualization experience.

III. VOXAR DESIGN AND WORKFLOW

We introduce a two-step method that precedes the volume
rendering pipeline and the augmentation of its result in the
real-world. Initially, by evaluating spatial and environmental
objectives, managed as user-selected preferences and pre-

defined constraints, VoxAR finds an appropriate position for
placing the virtual object in the real-world (Sec. IV). Next,
it adjusts the input TF colors such that the pixels of the
resultant volume-rendered object are discernable against the
background. Importantly, this adjustment attempts to best
preserve the perceptual mapping between the data attributes
and the colors assigned in the input TF (Sec. V). An overview
of the VoxAR pipeline is illustrated in Fig. 1.

The above-mentioned method is limited to a static FoV and
scene. However, one key utility of AR applications lies in their
ability to interact with virtual objects while navigating within
the real-world environment. Constantly adapting positions and
colors during data visualization and analysis can risk intro-
ducing inconsistencies in data perception. Thus, to support an
AR system with changing FoV, following initial placement,
VoxAR performs the TF optimization based on the background
colors surrounding the provided position. Subsequently, it
continues to evaluate the placement objective score with an
additional constraint of maintaining color discernibility of the
adjusted TF atop the updated background. If the objective
score falls below a threshold, an alternative optimal position
is suggested to the user. To this end, for initialization, the user
is first required to scan a working area. This allows the system
to generate a 3D scene model and evaluate its semantics.

IV. VOXAR VISUALIZATION OBJECT PLACEMENT

For a given scene instance, VoxAR solves the placement of
the virtual object in the real-world by (1) determining sets of
candidate locations, (2) analyzing the candidate locations with
regard to the user-selected objectives, and finally, (3) placing
the object at the location which best satisfies the objectives.

A. Determining Candidate Locations for Placement

The search space for placing a virtual object in the phys-
ical space can be reduced to a finite subset of visually
distinguishable, semantically meaningful, and environmentally
favorable locations in 3D space, which can then be evaluated
based on user preferences and constraints. VoxAR uses two
distinct categories of groups of candidate locations: surface
magnetism [25], [26] and discretized 3D. On top of this, each
object must be defined with a location and orientation. For
placement in discretized 3D, we evaluate regular, discrete
locations within a bounding volume of the working area,
using a fixed orientation. However, for surface magnetism,
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the orientation of the object is heavily dependent on varying
surface normals.

To achieve a real-time system, we introduce placement
maps, a texture-based data structure that stores real-world
spatial information for each valid pixel in the scene. A
placement map comprises three textures with the following
attributes:

• Validity map: a binary score to indicate whether the pixel
needs to be evaluated.

• Position map: if the pixel is valid, the corresponding 3D
position of the pixel, mapped to the texture (r, g, b) tuple.

• Rotation map: if the pixel is valid, the quaternion of the
pixel normal, mapped to the texture (r, g, b, a) tuple.

Representing this information as shader textures allows multi-
ple positions for multiple objectives to be evaluated in parallel
on a GPU.

Using the inverse projection matrix of the AR HMD camera
I , the placement maps for surface magnetism and discretized
3D are generated as follows. For surface magnetism, a single
placement map PMsurf consists of:

• position map POSsurf [x, y] = I ∗ (x, y, depth(x, y))
• rotation map ROTsurf [x, y] = orient(normal(x, y))
• validity map VMsurf [x, y] = is surface(x, y)

where depth and normal are externally calculated depth and
normal information of a given pixel using the initially scanned
3D model of the scene, orient returns a quaternion-based
orientation determined from a provided normal, and is surface
is a binary boolean based on externally calculated surface
detection information.

In contrast, discretized 3D creates multiple placement maps
from a user-specified bounding volume derived from the
camera frustum. Given a discrete set of camera-space values
along the camera positive Z axis {z | z = near+k·interval, k ∈
Z, near ≤ z ≤ far}, where near, far, and interval can be
adjusted, and single quaternion Q representing an orientation
in 3D space, a set of placement maps PM3D = {PMzi | ∀zi ∈
z, ∃PMzi} is generated where:

• position map POSzi [x, y] = I ∗ (x, y, zi)
• rotation map ROTzi [x, y] = (Q.x,Q.y,Q.z,Q.w)
• validity map VMzi [x, y] = 1

In effect, we create a discrete 3D grid of points via placement
maps, with width and height resolution corresponding to the
device FoV, and an adjustable depth resolution based on near,
far, and interval. Higher depth resolutions consider more
areas in 3D space, at the expense of overall system per-
formance.Although the discretized 3D placement maps come
from the same 3D volume, each placement map is evaluated
by objectives independently of all others.

B. Defining the placement objectives

We have identified and implemented a set of objectives,
discussed later in this section, based on our review of adaptive
placement-related objectives [2], [3], [19], [25]. The choice
of objectives was determined by how well they contribute to
the goal of AR volume visualization, with a primary focus
on volume visibility and a secondary focus on semantically

meaningful placement. We have additionally designed a new
color objective for the perceptual contrast between the TF and
real-world background colors.

Below, we describe the VoxAR placement objectives and
formulate the scores for each objective. Unless otherwise
specified, the output of the objective is a score ∈ [1, 0], using
the following equation:

Score(x, y, λ) =

{
1, if λ and valid

0, otherwise
(1)

O1 Surface magnetism allows users to either associate a
virtual object against a horizontal or vertical surface, or
set it to be placed anywhere in the 3D space. Given the
set of placement map types S, where S = {3D, surface},
the score for each pixel is determined using Eq. 1 where
λ is true if the type of the corresponding placement map
has been expressed as a user preference.

O2 Point proximity allows users to tether a virtual object
to a 3D object or position in the scene, with radius rO.
For a specified 3D point in the real-world, (xp, yp, zp),
to place the virtual object in its proximity at a maxi-
mum distance dp, the score is calculated from Eq. 1
where λ = ∥(xp, yp, zp) − pixel2world(x, y)∥≤ dp.
The pixel2world(x, y) provides a 3D position using the
placement map’s position map.

O3 Center of screen projection allows users to prefer
viewing the virtual object projected toward the center of
their FoV. For a device screen space center, (xs, ys), and
a scaling factor, s, the score map for this constraint is
calculated using:

Score(x, y, s) = e−α, α =
∥(x, y)− (xs, ys)∥

s
(2)

O4 Color discernibility is our novel objective that maxi-
mizes the perceptual difference between TF colors and
the colors in the real-world scene. Given an input TF,
we first generate a set T by uniformly sampling the
colors along its spectrum and projecting them in the
CIELAB color space. Subsequently, for the corresponding
color of the placement map pixel, also projected in the
CIELAB space, pLab, we first find the point tmin in
T with minimum Euclidean distance from pLab. Then,
the objective score for pixel (x, y) is calculated using
the CIELAB ∆E00, which measures the perceptual color
difference between two colors, in this case, tmin and
pLab. After this per-pixel metric has been calculated per-
pixel, the result is averaged using the object-sized 2D
kernel described previously.

O5 Visibility ensures the virtual object does not collide or get
occluded by scene objects. For the 3D point of a pixel
location, pixel2world(x, y), its score is determined by
utilizing our object-sized 2D kernel to place the bounding
box at the point and performing and, through uniformly
sampled pixels, performing oriented ray-cube intersection
tests. With regards to Eq. 1, λ is defined as the condition
where the real-world depth value derived from the camera
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depth texture is determined to be outside the oriented
bounding box based on the intersection test results.

O6 Environmental avoids the placement of the virtual object
against challenging environmental conditions (e.g., light
sources, which can cause flushing of the OST-HMD
projection). For a detected light source visible in the
scene, all of its pixels are set to 0.

Users can define any combination of objectives. For each
objective, a weight and a constraint level must be specified.
The weight assigns relative importance to the objective score,
whereas the constraint is a binary class that categorizes the
objective as requirement or preference. As such, a required
objective must always be met. In other words, if the placement
map has a validity value of 0, that pixel will not be considered
for placement, regardless of other objectives. Moreover, we
identify objectives O5 and O6 as hard constraints since
they impact the effectiveness of the visualization and, there-
fore, should always be considered with minimum pre-defined
weights.

Each candidate location in each placement map is evaluated
for each objective in terms of how well placing the volume
there would satisfy the objective. This produces a per-pixel
score based on each objective. The scores are stored in separate
score map textures. The storage format of placement maps and
score maps facilitates an easy visual understanding of how
different stages of the placement component interact.

Some objectives, such as O2, evaluate the placement map
on a per-pixel basis. Other image-related objectives, such as
O4, require more complex evaluations; since rendered volumes
generally take up multiple pixels onscreen, a 2D screen-space
bounding box around the projected volume should be evalu-
ated. To accomplish this, we utilize custom shaders that, for
each pixel being evaluated, calculate the size of the bounding
box of the AR object, centered at the pixel and oriented to
the corresponding rotation, to define a 2D kernel. As a result,
the final objective score for the center pixel is determined by
evaluating and averaging the scores of all pixels that fall within
the kernel.

C. Final placement

All generated score maps are grouped together according
to the corresponding placement map they were generated
from, regardless of the objective that generated them. Consid-
ered collectively, each score map group thus has a complete
evaluation of the individual placement map with respect to
all objectives. To determine which pixel location is locally
optimal within each score map group, the score maps SM are
aggregated according to the following equation:

SMagg[x, y] =

{
0 if ∃SMi((SMi[x, y] = 0) ∧Hi)∑n

i=1 SMi[x, y] ∗ wi otherwise
(3)

where SMagg is the aggregated score map, (x, y) is the current
pixel location under consideration, SMi is an objective-specific
score map, wi is the corresponding objective weight, and
Hi is 1 if the objective for SMi is classified as hard and 0
otherwise. This eliminates any pixel that does not satisfy the

hard constraint; the values of all remaining pixels are based on
a weighted sum of the scores at corresponding pixel locations
in the original score maps.

Once this aggregation has been completed, the locally
optimal pixel location score of every aggregated score map is
determined and compared. The aggregated score map with the
globally optimal pixel location has the corresponding location
in its placement map queried for its position and rotation,
which are used to place the AR object.

D. Re-evaluating changing FoV

A single placement evaluation is insufficient for high-quality
results with changing Fov and scenes throughout an AR
session. Continuous re-evaluation is needed to ensure that the
user-selected objectives are consistently met.

To achieve this, after initial placement, VoxAR re-examines
the existing placement every second by calculating an aggre-
gate objective score based on the location where the object
appears in the current FoV. In the case where the object is
outside the updated FoV, objectives O1, O4, O5, and O6
maintain their most recent scores, O3 returns 0, and O2 is
re-calculated.

To avoid spontaneous repositioning of the object, VoxAR
determines a new optimal position once the current position
objective score drops below a defined threshold. It is important
to note here that to maintain the perceptual mapping between
the TF and the volume data attributes, VoxAR does not re-
evaluate the TF colors (explained in Sec. V). Thus, during the
re-evaluation, O4, color discernibility, becomes a requirement
constraint.

When a new position is evaluated, the user receives a visual
indication in the form of a bounding box as a suggestion. If the
user accepts, the AR object will be moved to the new location
and, subsequently, re-evaluated. Contrarily, the suggestion may
move if the location is no longer good or disappear if the prior
location score significantly improves.

V. VOXAR TRANSFER FUNCTION ADJUSTMENT

In the direct volume rendering model, TFs emphasize or
classify features of interest within data by mapping intrinsic
data attributes to optical properties, such as color and opac-
ity [27]. For the scope of this work, we consider the case of 1D
TFs that map scalar data intensity values to color and opacity.
Typically, 1D TFs are defined using a set of control points
with assigned color and opacity values, which are then linearly
interpolated to construct a complete spectrum (Fig. 2(a)). As
a result, given a data value, s, TF(s) → (C3, α), where
C3 ∈ (R,G,B) and α is opacity.

When deployed in an OST-HMD, the visual similarity be-
tween colors in the real-world background and any color along
the interpolated TF spectrum can interfere with the optically
semi-transparent rendering of the virtual object. To avoid this,
we formulate a constrained optimization for TF adjustment
that aims to ensure: (1) the colors in the adjusted TF spectrum
are perceptually distinguishable from the background, and
(2) the color control points of the adjusted TF reflect visual
characteristics similar to those of the input TF.
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Fig. 2. (a) illustrates the linear interpolation of colors in a TF from its control points. (b) is a diagram of the CIELAB colorspace. (c) demonstrates the
mapping of the TF in (a) from RGB to CIELAB. The following illustrate the TF adjustment constraint calculations: (d) the intersection of the adjusted
control points with the background region (C1), and the ∆E calculation between consecutive pairs and mirror pairs (C2), (b) hue separation (C2), (c) hue
measurement (C3), and (d) valid projections between color spaces (C4).

A. Defining the solution space

To obtain a visually meaningful solution, we solve our
formulated optimization in the CIELAB color space [28].
CIELAB is a device-agnostic 3D space modeled to represent
colors as perceived by the human eye. Specifically, CIELAB
expresses colors as a measure of perceptual lightness, L∗, red-
ness-to-greenness, a∗, and blueness-to-yellowness, b∗. Based
on this representation, the distance between 3D color values
corresponds approximately to the change humans see between
colors. This is quantified using ∆E00 [29]:

∆E00 =

√(
∆L

SL

)2

+

(
∆C

SC

)2

+

(
∆H

SH

)2

+RT
∆C

SC

∆H

SH

(4)
where ∆L, ∆C, and ∆H are the differences in the lightness,
chroma, and hue of two colors in the CIELAB space, and SL,
SC , and SH are the scaling factors that correct for differences
in the range and slope of the L, C, and H scales. RT is
a term that accounts for the interaction between chroma and
hue differences. For simplicity, this paper will refer to ∆E00

as ∆E.
Moreover, to balance the effect of the size of visual objects

on color appearance [30], Stone et al. [31] have developed a
model that provides a minimum scaling factor for the L∗a∗b∗

axes that enables an effective discernibility of colors more
than 50% of the time. In our implementation, we consider a
visual angle of 1/3◦ and scale the function’s interval by 3, as
suggested by Gramazio et al. [32].

B. Optimization constraints

We now describe the constraints we have formulated for
the TF adjustment optimization problem. The constraints de-
termine a penalty cost for each adjusted TF candidate, which
the solver (described later in this section) attempts to minimize
to obtain a final result. As an initial step, RGB values from the
pixels of the real-world scene and the TF color control points

are projected into the CIELAB space. Using the projected
points, each candidate TF is evaluated as discussed below.
Fig. 2(d)-(g) illustrates the computation of the constraints.

C1 Background discriminability. The primary goal for
adjusting the TF is to minimize color interference with the
real-world background. Therefore, for the set of colors in the
adjusted TF candidate, T ′, and the background, B, we define
this constraint, I , as:

I(T,B) =

{
kED, if ∆E(T ′, B) ≤ d

0, otherwise
(5)

where ED is the constraint penalty score and k is a weighted
factor, explained below. We choose d = 11.5 for the ∆E
bound as a scaled just-noticeable difference (JND) measure to
cater to the possibility of low opacity TF mapping in addition
to the semi-transparent projection. Existing works [33], [34]
have quantified an empirical benchmark for the minimum
perceptual color difference as 2.3, commonly termed JND.
Based on our initial experiments and pilot user studies, we
empirically determined a scaled factor of JND ×5.

To support changing FoV around the initial placement, a
histogram of all colors in the working region is computed. This
is achieved by pivoting a virtual 360°omnidirectional camera
at the placement position and generating a panoramic scene
texture. Naturally, there are many unique colors in the entire
scene, and it can become challenging to find visually non-
intersecting TF colors. To effectively reduce the number of
background colors, we convert the panorama into superpixels
of 10% of the unique colors in the scene texture. Moreover, we
noticed that background pixels that have a low representation
of color distribution in the scene or are physically located
far from the object position make it difficult for the solver to
converge to a solution. Thus, we represent b ∈ B as a function
of its L*a*b representation, superpixel size, and distance from
the placement position. That is to say, b is represented as
(L∗, b∗, a∗,

∑n
(sn×dn)), where n is the color frequency, s is
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the superpixel size, and d is the euclidean distance between the
physical position corresponding to the center of the superpixel
and the object placement position.

To reduce the performance overhead of comparing all the
background and adjusted TF points, we define a convex hull
bounding the background points. Therefore, k in Eq. 5 is the
normalized frequency value × of normalized distance value of
the vertex closest to the TF point intersecting with the hull.

C2 Perceptual characteristics of the TF control points.
To preserve the visual characteristics of the input TF (T ), we
have identified three attributes to compare in candidate TFs:
(1) perceptual color difference, (2) hue separation, and (3)
L∗a∗b∗ congruence. We formulate this constraint, P , as:

P (T, T ′) = wdD(T, T ′) + waA(T, T
′) + wqQ(T, T ′) (6)

with wd, wa, and wq as weights for each attribute constraint.
The first term, D(T, T ′), measures the perceptual color

difference between control point pairs:

D(T, T ′) =
n−1∑
i=1

∣∣ ∆E(ti, ti+1)−∆E(t′i, t
′
i+1)

∣∣ (7)

where n is the number of control points in the TFs, t ∈ T ,
and t′ ∈ T ′.

The second term, A(T, T ′) maintains a measure of hue
separation between the control points by comparing the angles
between consecutive pairs on the a∗b∗ plane:

A(T, T ′) =
n−1∑
i=1

∣∣ H∡(ti, ti+1)−H∡(t
′
i, t

′
i+1)

∣∣

H∡(c1, c2) = cos−1

(
c1 · c2∥∥c1∥∥∥∥c2∥∥

) (8)

Finally, we noticed that due to consecutive pair-wise com-
parisons, in some instances, the solver would optimize the
cost by interleaving the shape of the TF curve in such a way
that it would satisfy the constraints. Therefore, to preserve the
TF global curvature, we additionally check for its congruence
by performing mirror comparisons of the control points. We
define the third term Q, that checks for congruence, as:

Q(T, T ′) =

n/2∑
i=1

∣∣ ∆E(ti, tn−i+1)−∆E(t′i, t
′
n−i+1)

∣∣

+

n/2∑
i=1

∣∣ H∡(ti, tn−i+1)−H∡(t
′
i, t

′
n−i+1)

∣∣
(9)

C3 Similarity to original color tone. For some applica-
tions, it may be important that the adjusted TF retains the color
tone or hueness of the input TF. Therefore, we formulate this
constraint, S, to adjust to a user-defined weight, ws, as:

S(T, T ′) =
n∑
i

s(tn, t
′
n),

s(c, c′) =

{
e∆hab(c

′,λh), if ∆hab(c
′, λh) ≥ λh

0, otherwise

hab(c) = arctan

(
cb∗

ca∗

)
(10)

where λh = wshab(tn), hab is the hueness measured in the
a∗b∗ space, and ∆hab is the absolute difference between two
colors.

C4 CIELAB to RGB projection. Due to the difference
in 3D gamut sizes, not all CIELAB values have a valid
RGB projection. Moreover, not considering gamma correc-
tion, projecting the optimization solution from a continuous
CIELAB space to a discrete RGB space, may lose perceptual
color differentiation on the device. Therefore, to constrain the
solution to have a valid and equally effective adjusted TF in
the RGB space, we define V as:

V (T ′
rgb) = wpr

n∑
i=1

Pr(t′rgb, i) +wjnd

n−1∑
i=1

J
(
t′rgb, i, t

′
rgb, i+1

)

(11)

Pr(c) =

{
0, if (0, 0, 0) ≤ (r, g, b) ≤ (1, 1, 1)

1, otherwise
(12)

J(c1, c2) =
k−1∑
i=1

f(lerp(c1, c2, i), lerp(c1, c2, i+ 1))

f(a, b) =

{
1, ∆E(lab2rgb(a), lab2rgb(b)) ≤ k JND
0, otherwise

(13)

where T ′
rgb is the set of control points from the candidate

T ′ projected in the RGB color space. Since TFs are a
continuous interpolation of control points, we formulate Eq. 13
to uniformly sample RGB values in T ′

rgb, using a sampling
frequency k, and maintain a reasonable JND value along the
spectrum when reprojected back to the CIELAB space.

C. Solving the TF adjustment final objective

Using the constraints formulated above, VoxAR solves for
an adjusted TF, TFadj by minimizing the following objective:

[
R̂, T̂

]
= argminR,T[I(T

′, B) + P (T, T ′)

+V (T ′
rgb) + S(T, T ′)]

T ′ =
[
RT

]
T , T =

[
t1, t2, ..., tn

]⊤
(14)

TFadj =
[
R̂, T̂

]
T (15)

where R ∈ (θL∗ , θa∗ , θb∗) and T ∈ (L∗, a∗, b∗) are rotation
and translation matrices, respectively. Essentially, we solve
for a rotation and translation that would optimally transform
the input TF control points in the CIELAB space, such that
the adjusted TF would satisfy the formulated constraints.
Given the large search space and possible solutions, we
use Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [14] as the solver for our objective function. CMA-
ES is an evolutionary algorithm commonly used for global
optimization of non-linear functions. It is particularly effective
in high-dimensional search spaces and can handle noisy and
non-convex optimization problems.

At each iteration, CMA-ES generates a population of can-
didate R and T according to a multivariate normal distribution
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Fig. 3. VoxAR TF adjustment results. (a) and (c) show FoVs of the Jet volume rendered using Haze-Cyan input TF (top) and our adjust VoxAR TF (Bottom),
and the Skull volume rendered using the Diverging input TF (top) and our adjust VoxAR TF (Bottom), respectively. (b) and (d) show plots of the input and
VoxAR TF in the CIELAB (top) and HSV (bottom) color space.

with a mean vector and covariance matrix updated based on
the history of successful candidate solutions. Specifically, the
candidates from a population are used to transform the input
TF, which we have referred to as T ′, and are evaluated using
the objective function in Eq. 14. The best candidate solutions
are then selected to form the next generation. The mean and
covariance matrix of the multivariate normal distribution are
updated based on the selected candidate solutions to bias the
search towards promising regions of the search space. This
process is repeated until the maximum number of iterations
or a desired level of convergence is met. Thus, CMA-ES
uses a combination of random search and adaptation of the
search distribution to explore the search space efficiently and
converge to an optimal solution.

VI. IMPLEMENTATION

Our end-to-end VoxAR system uses Unity3D [35] game
engine and Microsoft HoloLens2 as the OST-HMD medium.
For volume rendering, we utilize VTK’s holographic remote
rendering feature [36]. Since placement objectives are imple-
mented using shaders, they can be evaluated on the GPU.
However, our current implementation solves the TF adjustment
algorithm on the CPU. Thus, after receiving a placement
result from the HMD, VoxAR solves the adjusted TF on a
compute server and passes the result to VTK for volume
rendering. Using the Microsoft Mixed Reality Toolkit (MRTK)
holographic remoting feature [37], the volume-rendered result
is sent to the HMD over a wireless network. Furthermore, the
coupled MRTK and VTK system allows users to perform basic
volume interactions – in our case, rotation – which is then
communicated to VTK for re-rendering and, subsequently,
reprojection in AR. VoxAR assumes certain features, such as
depth information and spatial mapping, to be obtained using
the HMD’s API (such as MRTK). Additionally, many AR
toolkits are capable of surface detection, classifying specific
surfaces as walls, floors, tables, and more.

VII. RESULTS AND EVALUATION

We now discuss the results of VoxAR, including findings
from a user study we conducted to assess the system. Although
the results, as seen through an OST-HMD, cannot be shown
as images, we use the MRTK additive shader on the HoloLens
Mixed Reality Capture to exhibit the visual quality of the
rendered semi-transparent pixels. For this paper, we use the
following volume datasets and standard TF presets:

Volume dataset, with sizes:
• Jet heptane gas simulation undergoing combustion (Jet),

[300× 300× 300]
• Skull CT (Skull), [256× 256× 256]
• Engine, [256× 256× 128]
Input TFs, with control points :
• Red-White-Blue (Diverging), 3 control points:

• Haze-Cyan, 17 control points:

• Continuous Viridis, 256 control points:

For all TF adjustments, we used a large value of k = 10
and wpr = 10 for C1 background discernibility and C4
CIELAB to RGB projection weights, respectively, to avoid
invalid solutions that may need manual correction. All other
weights, wd, wa, wq, and wjnd, were set to 0.5. We let the
CMA-ES iterate over the optimization for a maximum of 20
iterations. We refer the reader to a mixed-reality video capture
of our results in the supplementary material.

In Fig. 3 we demonstrate examples of VoxAR for scientific
visualization. Fig. 3(a) top shows the Jet volume rendered
using the Haze-Cyan TF in a hallway. Following placement
– using objectives O3 center screen and O1 anywhere in 3D
– VoxAR adjusts the TF such that the gas volume at the lighter
end of the input TF, blending with the wall and floor, becomes
visually contrasting. The resultant volume-rendered object is
shown in Fig. 3(a) bottom. Fig. 3(b) top shows the input and
VoxAR TFs projected in the CIELAB space. The gray hull
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represents colors in the real-world, captured in 360°centered at
the VoxAR placement position. It can be seen here that VoxAR
optimizes the TF to avoid intersection with the real-world
colors while maintaining the perceptual shape of the input
TF. Moreover, Fig. 3(b) bottom shows the HSV projection of
the input and VoxAR TFs. Extending this example to situated
visualization applications, where experts may wish to analyze
simulation data connected to its physical referent or location,
VoxAR aids in effectively placing the virtual volume in the
scene, based on the provided objectives, and study the data
without interference with the background colors.

Fig. 3(c) top and bottom demonstrate the visualization of
a human skull CT volume, using an input diverging TF and
the VoxAR adjusted TF, respectively, projected on the wall
of a medical examination room, using surface magnetism
objective O1. VoxAR TF alleviates the visually intersecting
colors of the wall with the resultant volume-rendering. Here,
we also demonstrate C3, hue similarity constraint. Using
λh = 20, it can be seen in Fig. 3(d) that VoxAR TF minimally
adjusted the input TF hues in order to avoid background
color intersection. VoxAR can facilitate the integration of
AR-based medical visualization applications, specifically in
scenarios where medical experts may want to observe and
project data in the surroundings or refer to the patient without
a blocking video-see-through device. Moreover, the VoxAR
TF adjustment algorithm to preserve the perceptual mapping
of colors to data attributes while avoiding background inter-
ference facilitates the sensitive need to visualize medical data
as accurately as possible.

Furthermore, we compare our technique with the most
recent work in AR color enhancement by Zhang et al [4]
(using λE = 0.4, as suggested in the publication). Fig. 4(a)
shows a synthetic volume of shapes with data intensities spread
uniformly across the data ranges, rendered using the Haze-
Cyan TF. While [4] aids in recovering the shapes blended
in the background, highlighted using the dotted annotation
in (b), their algorithm does not retain color consistency of
the TF, as pointed out using the arrow. This is because
[4] performs a pixel-wise operation of the virtual object
against its corresponding background color. By designing an
algorithm that precedes the volume-rendering step VoxAR, in
contrast, takes a more wholesome approach and determines an
optimized color spectrum by evaluating simultaneously all the
background colors. The improvement in both the color contrast
and color consistency using VoxAR is shown in Fig. 4(c).

Next, in Fig. 5 we demonstrate the results of the VoxAR
placement for a small working region with varying colors, a
surface, and a point defined at the center of the scene with
proximity assigned to cover the area. The evaluation was
conducted for an input volume with a TF overlapping with
the background, shown in Fig. 5(a). Fig. 5(b) shows that for
objectives O4 color discernibility and O1, VoxAR places the
volume on the surface and in front of the green background,
away from the overlapping yellow color. In contrast, for O2
point proximity and O1 anywhere in 3D, VoxAR places the
volume in front of the blue background, as shown in Fig. 5(c).

Finally, in Fig. 6, we demonstrate VoxAR placement updates
for changing FoV. For a changing FoV from the green FoV

Input TF VoxAR TF
(a) (b) (c)

Fig. 4. For an input TF in (a), (b) is the result using [4], and (c) is the
VoxAR result. The white dotted annotation shows that both [4] and VoxAR
improve visibility against the background, however, VoxAR maintains the TF
color consistency, as seen on the color bar pointed by the arrow.

Surface

Input 

(O1) Surface magnetism
(O4) Color discernibility

(O1) Point proximity 
(O4) Color discernibility

(b)

Anchor for 
point proximity

(a) (c)

Fig. 5. Evaluation of VoxAR surface placement. For an input TF to be
positioned in a scene with colored placeholders and a surface shown in (a),
(b) and (c) demonstrate the results based on the objectives provided.

to the blue FoV in Fig. 6(a), (b) shows the initial placement
of the volume for the green FoV. As the user moves to the
blue FoV, the placement score drops below a defined threshold
of 80% of the original score, and a new optimal placement is
suggested to the user using a bounding box shown in Fig. 6(c).
On performing a pinching gesture, the volume is updated to
the new position.

A. User Study

For our user study, we recruited 16 participants: 11 males
and 5 females, aged between 19 and 35 (Mean: 27.6±4.7). No
participants were color-blind. Since this work is specifically
for volume rendering visualization, we required the partici-
pants to have an understanding of volume rendering and TFs.

a) Experiment Design: The study was carried out in two
sequential parts. First, each participant was asked to place the
Engine volume in a simulated 3D scene using one of two pre-
defined objective combinations (Part I). The Engine dataset
was modified to contain cube and sphere volume primitives
(explained later in this section). We divided the setup so two
participants had the same objective combination. Moreover, we
ensured that the 3D scene and objective combination resulted
in similar difficulty for each setup.

Next, we computed an adjusted TF for the user-configured
placement and a VoxAR placement using the same objectives.
As a result, we generated four scenarios:
S1 User-configured placement + input TF, (UP+OTF)
S2 User-configured placement + its VoxAR TF, (UP+VTF)
S3 VoxAR placement + input TF, (VP+OTF)
S4 VoxAR placement + VoxAR TF, (VP+VTF)
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(a)

(b)

(c)

(d)

Fig. 6. Updating placement as the user moves from the green to blue FoV.

(a) (b)

Fig. 7. Screenshot of the visual cues provided to the participants for Part
I. The transparent ’honeycomb’ texture marks valid surface areas, the purple
region indicates out-of-bound, and the green dot indicates screen center.

For each scenario, participants performed two tasks (Part II):
T1 Count the number of volumetric primitives of type X.
T2 Count the number of volumetric primitives of type Y that

have an intensity value in the range I.
Part I: Each participant was shown a photogrammetry-

reconstructed [38] 3D scene in Unity and asked to find an
optimal placement for a volume that is either on (1) a surface
area or (2) anywhere in the view 2.5m from a given point, and
for both, placed as close to the center of the FoV as possible.
To aid the participants with the objectives, we provided 3D
visuals in the scene as shown in Fig. 7 (a).

Part II: We adopt a within-subject design with two indepen-
dent variables. Specifically, for each participant, we presented
four scenarios, S1 to S4, and asked them to complete tasks
T1 and T2 for all the scenarios. To avoid learning, the
Engine volume was modified for each scenario to include cube
and sphere volumes of randomized frequency (with a total
cube+volume count of 10), positions, sizes ranging between
10 × 10 × 10 and 20 × 20 × 20 voxels, and intensity values
between 0 - 255 (see Fig. 7 (b) for an example). We used the
R2B diverging TF as input for S1 and S3, and for ease of
identifying intensity ranges in T2, we binned the TF colors
into five uniform-sized bins. Moreover, for counterbalancing
our findings, each participant was presented S1 to S4 in a
random order.

Before starting Part II, we first performed eye and color
calibration of the HoloLens, followed by a warm-up session
to help the participants familiarize themselves with using the
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Fig. 8. Comparison of mean Absolute Error between T1 and T2 for all
scenarios (95% confidence interval).

HMD. During warm-up, they were shown a different volume
and TF and were asked to practice the hand-gesture-based
rotation interactivity. At the start of each trial, the participants
were seated where the pre-defined FoV was measured for Part
I and were asked to respond to the tasks “as accurately and
efficiently as possible.” Based on our current implementation
of the VoxAR system, the participants were only allowed to
rotate the volume. After every trial, the participants were asked
a series of qualitative questions.

b) User Study Results: We present an evaluation of
VoxAR by analyzing the quantitative and qualitative responses
for T1 and T2, for all scenarios, based on Absolute Error and
Task Completion Time. For our analysis, we define S1 (UP
+ OTF) as the baseline condition and use it to compare with
(UP+VTF), (VP+ OTF), and (VP+VTF).

Absolute Error: We define absolute error as the average
measure of how much the answers of the participants differ
from the correct answer. Fig. 8 shows a plot of this measure
for each scenario, averaged over the total number of trials.
Based on this result, we can see that the end-to-end VoxAR
technique, placement optimization followed by TF adjustment,
significantly decreases the mean absolute error. That is to say,
for both tasks, the participants were able to perform the data
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Fig. 9. Comparison of mean task completion time between T1 and T2 for
all scenarios (95% confidence interval).

analysis tasks more accurately. Compared to UP+OTF, VoxAR
reduces the mean absolute error by 65.8% and 69.6% for
T1 and T2, respectively. An application of Friedman’s test
confirmed that there is a significant effect on the recognition
of an element of volumetric objects: Q=16.9; p¡.001 for T1
and (Q=12.8; p¡.01 for T2. Pairwise comparisons using the
Nemenyi post-hoc test indicate that the difference between
the baseline (UP+OTF) and ours (VP+VTF; VoxAR) in both
of the tasks is significant (p=0.001; p=0.021, respectively).
In observing the reasons for the difference in visualization
effectiveness, we noticed that, as shown in Fig. 10, the
background blending made the participants prone to missing
smaller primitives (as marked by the blue ring). Moreover,
given the similarity of the red TF color with the background,
most users misconceived the hole in the volume as a primitive
(marked by the white ring). However, using the VoxAR TF,
participants were able to deduce that the appearance of the
background color represents a hole. The findings also confirm
the idea that using either of the VoxAR components, placement
optimization or TF adjustment, can improve data perception
in OST-AR.

Task Completion Time Next, we measure the task com-
pletion time of the two tasks over the total number of trials,
as shown in Fig. 9. The results show that VoxAR reduces
the time taken to complete each task by 58.1% and 39.5%,
on average, respectively. An application of Friedman’s test
shows that there is a significant effect on the completion
time (Q=24.5; p¡.001 for T1) (Q=13; p¡.005 for T2). Pairwise
comparisons using the Nemenyi post-hoc test indicate that the
difference between UP+OTF and ours, VP+VTF and VoxAR,
is significant (p=0.001; p=0.007, respectively).

c) Subjective feedback: To collect findings for perceived
performance, effort, and the certainty of the two tasks, we
asked qualitative questions based on the Semantic differential
scale [39], at the end of each task. Each question consisted
of ratings ranging from 0 to 5, and was anchored by bipolar
adjectives. A higher rating indicated that the participant was
more confident in their abilities or had a higher positive
response towards the condition. The results did not show a
uniform tendency across questions. However, the lowest rated

VoxARInput 

Fig. 10. An example of instances where VoxAR TF aided users to better
perceive data, compared to the input TF.

condition among all participants was consistently UP+OTF
(Mean: 3.3 ± 1.2). The mean ratings of our full method
(VP+VTF) was 3.67, and the other two conditions (UP+VTF
and VP+OTF) were rated similarly (3.65, 3.79, respectively).

B. System Performance

For all results, we used an Intel Xeon Bronze 3106 CPU
with 64GB of RAM and an Nvidia Quadro RTX 6000 as
the remote render server. On average, VoxAR placement
achieved framerates in excess of the HoloLens target framerate
of 60Hz [40]. Considering surface placement alone, VoxAR
achieves > 80fps, dependent on placeable surfaces in view.
For 3D placement, we achieve 70-80fps, and considering both,
we achieve 53-65fps. The performance of VoxAR regarding
surface placement is more stable, given that the system only
needs a single placement map. Performance regarding 3D
placement is more variable as it is negatively correlated with
the resolution of the 3D space considered.

The VoxAR TF adjustment is CPU-based and has an O(n)
time complexity, depending on the number of TF control
points. The diverging TF with 3 control points took 5s,
whereas the Viridis TF, which is a continuous TF and has the
maximum number of control points (255) took 15s to optimize.
As TF adjustment occurs only once, the system is capable of
real-time performance after initial placement.

VIII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

This paper presented VoxAR, a two-step approach for
enhancing volume rendering visualization in OST-HMDs. Our
method combines spatial and environmental constraints with
user preferences to find an optimal placement for the volume
at runtime. Once placed, it adjusts the input TF to improve
its visual distinctiveness against the real-world background,
when rendered, while also maintaining the perceptual map-
ping between the data attributes and the input TF colors.
Furthermore, we have provided a solution to extend the VoxAR
method for changing FoV, thus supporting a key utility of
AR applications to allow interactivity in the real-world. To
evaluate VoxAR, we have demonstrated potential applications
and compared our technique with a recent work in OST-AR
color enhancement. We also carried out a user study, and its
findings suggest that VoxAR facilitates effective and efficient
user performance when conducting volume rendering-related
comprehension tasks in OST-AR.
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Naturally, VoxAR is not free from limitations. It addresses
a novel challenge in AR-based scientific visualization. Some
limitations are hardware-related. For instance, OST-HMDs
cannot project dark colors, such as black, thus limiting the
lower luminance range of TF color options. Additionally,
many OST-AR devices do not contain a dedicated GPU, thus
affecting our shader-driven performance and needing to offload
our volume rendering pipeline. To this end, we intend to
examine newer devices that allow visor-dimming features and
have dedicated GPUs.

At the technique level, although we address changing FoV,
further challenges for dynamic scenes need to be addressed.
Specifically, converging to a solution becomes difficult as
the color spectrum in the background surrounding the initial
placement broadens. As such, we aim to investigate the pos-
sibility of dynamically adapting the TF colors for immediate
yet changing backgrounds in such a way that the TF update
would minimally affect the perceptual mapping of its colors
to the data attributes. This also implies studying the impact
of such changes on data analysis and reasoning during real-
time and dynamic visualization adaptation. Moreover, VoxAR
does not address high-frequency textures or colors gathered
from artifacts due to specular reflection or transparent objects
like windows and glass. Finally, we plan to develop a more
collaborative version of the system, allowing for multiple users
and multiple volumes.
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